Skip to main content

Stereopsis in the Absence of Binocular Disparity

  • Chapter
  • First Online:
The Perception and Cognition of Visual Space

Abstract

The absence of binocular disparity can make the world seem substantially flatter (for instance, when we close one eye) or even‚ I would argue‚ completely flat (for instance, when we view an object on the horizon). But why should removing just one of the many available depth cues have such a transformative effect? After all, we still have access to the numerous pictorial cues that are thought to specify the depth of the scene. So treating binocular disparity as just another depth cue doesn’t appear to do justice to the transformational effect of either gaining or losing disparity. Some authors have argued that although binocular disparity transforms our visual experience it doesn’t affect the perceived geometry of the scene, but this position does not appear to be sustainable.

The original version of this chapter was revised: Post-publication corrections have been incorporated. The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-66293-0_5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akeley, K., Watt, S. J., Girshick, A. R., & Banks, M. S. (2004). A stereo display prototype with multiple focal distances. ACM Transactions on Graphics, 23(3), 804–813.

    Article  Google Scholar 

  • Ames, A., Jr. (1925a). The illusion of depth from single pictures. Journal of the Optical Society of America, 10(2), 137–148.

    Article  Google Scholar 

  • Ames, A., Jr. (1925b). Depth in pictorial art. The Art Bulletin, 8(1), 4–24.

    Article  Google Scholar 

  • Austin, J. L. (1962). Sense and sensibilia. Oxford: Oxford University Press.

    Google Scholar 

  • Auvray, M., & O’Regan, J. K. (2003). Influence of semantic factors on blindness to progressive changes in visual scenes / L’influence des facteurs sémantiques sur la cécité aux changements progressifs dans les scènes visuelles. L’année Psychologique, 103, 9–32.

    Google Scholar 

  • Balzer, R. (1998). Peepshow: A visual history. New York: Harry N. Abrams.

    Google Scholar 

  • Barry, S. (2009). Fixing my gaze: A scientist’s journey into seeing in three dimensions. New York: Basic Books.

    Google Scholar 

  • Bayne, T., & Montague, M. (2011). Cognitive phenomenology. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Bernhard, M., Waldner, M., Plank, P., Soltészová, V., & Viola, I. (2016). The accuracy of gauge-figure tasks in monoscopic and stereo displays. IEEE Computer Graphics and Applications, 36(4), 56–66.

    Google Scholar 

  • Blake, E. C. (2003). Zograscopes, virtual reality, and the mapping of polite society in eighteenth-century England. In L. Gitelman & G. B. Pingree (Eds.), New media (pp. 1–30). Cambridge, MA: MIT Press.

    Google Scholar 

  • Bradshaw, M. F., Parton, A. D., & Glennerster, A. (2000). The task-dependent use of binocular disparity and motion parallax information. Vision Research, 40(27), 3725–3734.

    Article  PubMed  Google Scholar 

  • Carr, H. A. (1935). An introduction to space perception. New York: Longmans, Green, & Co.

    Google Scholar 

  • Chudnoff, E. (2015). Cognitive phenomenology. Oxford: Routledge.

    Google Scholar 

  • Claparède, E. (1904). Stéréoscopie monoculaire paradoxale. Annales d’Oculistique, 132, 465–466.

    Google Scholar 

  • Cooper, E. A., & Banks, M. S. (2012). Perception of depth in pictures when viewed from the wrong distance. Journal of Vision, 12(9), 896 (abstract).

    Google Scholar 

  • Cutting, J. E. (2003). Reconceiving perceptual space. In H. Hecht, R. Schwartz, & M. Atherton (Eds.), Perceiving Pictures: An Interdisciplinary Approach to Pictorial Space. Cambridge, MA: MIT Press.

    Google Scholar 

  • Di Luca, M., Domini, F., & Caudek, C. (2010). Inconsistency of perceived 3D shape. Vision Research, 50(16), 1519–1531.

    Google Scholar 

  • Dolgoff, E. (1997). Real-depth imagining. SID Digest, 28, 269–272.

    Google Scholar 

  • Domini, F., & Caudek, C. (2011). Combining image signals before three-dimensional reconstruction: The intrinsic constraint model of cue integration. In Trommershäuser, Körding, & Landy (Eds.), Sensory cue integration. Oxford: Oxford University Press.

    Google Scholar 

  • Doorschot, P. C., Kappers, A. M., & Koenderink, J. J. (2001). The combined influence of binocular disparity and shading on pictorial shape. Perception and Psychophysics, 63, 1038–1047.

    Article  PubMed  Google Scholar 

  • Elner, K. W., & Wright, H. (2015). Phenomenal regression to the real object in physical and virtual worlds. Virtual Reality, 19(1), 21–31.

    Article  Google Scholar 

  • van Ee, R, van Dam, L. C. J., & Erkelens, C. J. (2002). Bi-stability in perceived slant when binocular disparity and monocular perspective specify different slants. Journal of Vision, 2(9), 597–607.

    Google Scholar 

  • Erkelens, C. J. (2012). Contribution of disparity to the perception of 3D shape as revealed by bistability of stereoscopic Necker cubes. Seeing and Perceiving, 25(5), 561–576.

    Google Scholar 

  • Erkelens, C. J. (2013). Virtual slant explains perceived slant, distortion and motion in pictorial scenes. Perception, 42, 253–270.

    Article  PubMed  Google Scholar 

  • Fine, I., Wade, A. R., Brewer, A. A., May, M. G., Goodman, D. F., Boynton, G. M., et al. (2003). Long-term deprivation affects visual perception and cortex. Nature Neuroscience, 6(9), 915–916.

    Article  PubMed  Google Scholar 

  • Firestone, C., & Scholl, B. J. (2016). Seeing and thinking: Foundational issues and empirical horizons. Behavioral and Brain Sciences, 39, 53–67.

    Article  Google Scholar 

  • Gabor, D. (1960, July 14). Three-dimensional cinema. New Scientist, 141.

    Google Scholar 

  • Gibson, J. J. (1947). Motion picture testing and research. Research Reports, Report No. 7, Army Air Forces Aviation Psychology Program.

    Google Scholar 

  • Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.

    Google Scholar 

  • Glennerster, A., Rogers, B. J., & Bradshaw, M. F. (1996). Stereoscopic depth constancy depends on the subject’s task. Vision Research, 36(21), 3441–3456.

    Article  PubMed  Google Scholar 

  • Gogel, W. C. (1969). The sensing of retinal size. Vision Research, 9, 3–24.

    Article  Google Scholar 

  • Gogel, W. C., & Da Silva, J. A. (1987). Familiar size and the theory of off-sized perceptions. Perception and Psychophysics, 41(4), 318–328.

    Article  PubMed  Google Scholar 

  • Goodale, M. A., & Servos, P. (1996). Visual control of prehension. In H. Zelaznik (Ed.), Advances in motor learning and control (pp. 87–121). Champaign, IL: Human Kinetics Publishers.

    Google Scholar 

  • Gregory, R. L. (1968). Perceptual illusions and brain models. Proceedings of the Royal Society B, 171, 279–296.

    Article  Google Scholar 

  • Gregory, R. L. (2004). The blind leading the sighted. Nature, 430, 1.

    Article  Google Scholar 

  • Gregory, R. L. (2005). The Medawar lecture 2001 knowledge for vision: Vision for knowledge. Philosophical Transactions of the Royal Society B, 360, 1231–1251.

    Article  Google Scholar 

  • Gregory, R. L., & Wallace, J. G. (1963). Recovery from early blindness: A case study. Experimental Psychology Society Monograph, no. 2.

    Google Scholar 

  • Hagen, M. A. (1980). The Perception of Pictures I: Alberti’s Window: The Projective Model of Pictures. New York: Academic Press.

    Google Scholar 

  • Hibbard, P. (2008). Can appearance be so deceptive? Representationalism and binocular vision. Spatial Vision, 21(6), 549–559.

    Article  PubMed  Google Scholar 

  • Hill, H., & Bruce, V. (1993). Independent effects of lighting, orientation, and stereopsis on the hollow-face illusion. Perception, 22, 887–897.

    Google Scholar 

  • Holt, E. (1904). Die von M. von Rohr gegebene Theorie des Veranten, eines Apparats zur Richtigen Betrachtung von Photographien by E. Wandersleb; The Verant, a New Instrument for Viewing Photographs from the Correct Standpoint by M. von Rohr; Der Verant, ein Apparat zum Betrachten von Photogrammen in Richtigen Abstande by A. Köhler. The Journal of Philosophy, Psychology and Scientific Methods, 1(20), 552–553.

    Article  Google Scholar 

  • Hornsey, R. L., Hibbard, P. B., & Scarfe, P. (2015). Ordinal judgments of depth in monocularly- and stereoscopically-viewed photographs of complex natural scenes. Proceedings of the International Conference on 3D Imaging.

    Google Scholar 

  • Howard, I. P., & Rogers, B. J. (2012). Perceiving in depth. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Hyde, R. (2015). Paper peepshows: The Jaqueline and Jonathan Gestetner collection. Suffolk: Antique Collectors’ Club.

    Google Scholar 

  • Johnston, E. B. (1991). Systematic distortions of shape from stereopsis. Vision Research, 31(7–8), 1351–1360.

    Article  PubMed  Google Scholar 

  • Johnston, E. B., Cumming, B. G., & Parker, A. J. (1993). Integration of depth modules: Stereo and texture. Vision Research, 33, 813–882.

    Article  PubMed  Google Scholar 

  • Julesz, B. (1960). Binocular depth perception of computer-generated patterns. Bell Labs Technical Journal, 39, 1125–1162.

    Article  Google Scholar 

  • Knill, D. C., & Saunders, J. A. (2003). Do humans optimally integrate stereo and texture information for judgments of surface slant? Vision Research, 43(24), 2539–2558.

    Google Scholar 

  • Koenderink, J. J. (1998). Pictorial relief. Philosophical Transactions of the Royal Society A, 356, 1071–1086.

    Article  Google Scholar 

  • Koenderink, J. J. (2011). Gestalts and pictorial worlds. Gestalt Theory, 33, 289–324.

    Google Scholar 

  • Koenderink, J. J. (2015). PPP. Perception, 44, 473–476.

    Article  PubMed  Google Scholar 

  • Koenderink, J. J., & van Doorn, A. J. (1995). Relief: Pictorial and otherwise. Image and Vision Computing, 13, 321–334.

    Article  Google Scholar 

  • Koenderink, J. J., & van Doorn, A. J. (2003). Pictorial space. In H. Hecht, R. Schwartz, & M. Atherton (Eds.), Perceiving Pictures: An Interdisciplinary Approach to Pictorial Space. Cambridge, MA: MIT Press.

    Google Scholar 

  • Koenderink, J. J., van Doorn, A. J., & Kappers, A. M. L. (1994). On so-called paradoxical monocular stereoscopy. Perception, 23, 583–594.

    Article  PubMed  Google Scholar 

  • Koenderink, J. J., van Doorn, A. J., & Kappers, A. M. L. (2006). Pictorial relief. In M. R. M. Jenkin & L. R. Harris (Eds.), Seeing spatial form. Oxford: Oxford University Press.

    Google Scholar 

  • Koenderink, J. J., van Doorn, A., & Wagemans, J. (2011). Depth. i-Perception, 2, 541–564.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koenderink, J., van Doorn, A., & Wagemans, J. (2015a). Deploying the mental eye. i-Perception, 6(5), 1–17.

    Google Scholar 

  • Koenderink, J., van Doorn, A., & Wagemans, J. (2015b). Part and Whole in Pictorial Relief. i-Perception, 6(6), 1–21.

    Google Scholar 

  • Koenderink, J. J., van Doorn, A. J., Kappers, A. M. L., & Todd, J. T. (2004). Pointing out of the picture. Perception, 33, 513–530.

    Google Scholar 

  • Koenderink, J., van Doorn, A., Albertazzi, L., & Wagemans, J. (2015c). Relief articulation techniques. Art & Perception, 3(2), 151–171.

    Google Scholar 

  • Koenderink, J. J., Wijntjes, M. W. A., & van Doorn, A. J. (2013). Zograscopic viewing. i-Perception, 4(3), 192–206.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koenderink, J. J., et al. (2010). Does monocular visual space contain planes? Acta Psychologica, 134, 40–47.

    Article  PubMed  Google Scholar 

  • Kubovy, M. (1986). The psychology of perspective and renaissance art. Cambridge: Cambridge University Press.

    Google Scholar 

  • Landy, M., Banks, M., & Knill, D. (2011). Ideal-observer models of cue integration. In Trommershäuser, Körding, & Landy (Eds.), Sensory cue integration. Oxford: Oxford University Press.

    Google Scholar 

  • Liu, S., Cheng, D. W., & Hua, H. (2008). An optical see-through head-mounted display with addressable focal planes. In Proceedings of IEEE/ACM Intl Symp. Mixed and Augmented Reality (ISMAR 08), 33–42.

    Google Scholar 

  • Loftus, A., Servos, P., Goodale, M., Mendarozqueta, N., & Mon-Williams, M. (2004). When two eyes are better than one in prehension: Monocular viewing and end-point variance. Experimental Brain Research, 158(3), 317–327.

    PubMed  Google Scholar 

  • Loomis, J. M., Philbeck, J. W., & Zahorik, P. (2002). Dissociation between location and shape in visual space. Journal of Experimental Psychology: Human Perception and Performance, 28(5), 1202–1212.

    PubMed  PubMed Central  Google Scholar 

  • Love, G. D., Hoffman, D. M., Hands, P. J. W., Gao, J., Kirby, A. K., & Banks, M. S. (2009). High-speed switchable lens enables the development of a volumetric stereoscopic display. Optics Express, 17(18), 15716–15725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Masaoka, K., Nishida, Y., Sugawara, M., Nakasu, E., & Nojiri, Y. (2013). Sensation of realness from high-resolution images of real objects. IEEE Transactions on Broadcasting, 59, 72–83.

    Article  Google Scholar 

  • Mausfeld, R. (2003). Conjoint Representations and the Mental Capacity for Multiple Simultaneous Perspectives. In H. Hecht, R. Schwartz, & M. Atherton (Eds.), Perceiving Pictures: An Interdisciplinary Approach to Pictorial Space. Cambridge, MA: MIT Press.

    Google Scholar 

  • Metzger, W. (1975). Gesetze des Sehens. Frankfurt: Waldemar Kramer.

    Google Scholar 

  • Münsterberg, H. (1904). Perception of distance. Journal of Philosophy, Psychology and Scientific Methods, 1(23), 617–623.

    Article  Google Scholar 

  • Ooi, L. T., & He, Z. J. (2015). Space perception of strabismic observers in the real world environment. Investigative Ophthalmology & Visual Science, 56, 1761–1768.

    Article  Google Scholar 

  • O’Regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 883–917.

    Google Scholar 

  • O’Regan, J. K. (2011). Why Red Doesn’t Sound Like a Bell: Understanding the Feel of Consciousness. Oxford: Oxford University Press.

    Google Scholar 

  • Palmisano, S., Gillam, B., Govan, D. G., Allison, R. S., & Harris, J. M. (2010). Stereoscopic perception of real depths at large distances. Journal of Vision, 10(6), 19.

    Article  PubMed  Google Scholar 

  • Papathomas, T. V. (2002). Experiments on the role of painted cues in Hughes’s reverspectives. Perception, 31, 521–530.

    Google Scholar 

  • Parker, A. J. (2016). Vision in our three-dimensional world. Philosophical Transactions of the Royal Society B, 371(1697), 20150251.

    Article  Google Scholar 

  • Peacocke, C. (1983). Sense and content: Experience, thought, and their relations. Oxford: Oxford University Press.

    Google Scholar 

  • Predebon, J. (1993). The familiar-size cue to distance and stereoscopic depth perception. Perception, 22(8), 985–295.

    Google Scholar 

  • Ramachandran, V. S. (1988). Perception of shape from shading. Nature, 331, 163–166.

    Article  PubMed  Google Scholar 

  • Rogers, B. J., & Bradshaw, M. F. (1993). Vertical disparities, differential perspective and binocular stereopsis. Nature, 361, 253–255.

    Article  PubMed  Google Scholar 

  • Rogers, B. J., & Bradshaw, M. F. (1995). Disparity scaling and the perception of frontoparallel surfaces. Perception, 24, 155–179.

    Article  PubMed  Google Scholar 

  • Rogers, B., & Gyani, A. (2010). Binocular disparities, motion parallax, and geometric perspective in Patrick Hughes’s ‘reverspectives’: Theoretical analysis and empirical findings. Perception, 39(3), 330–348.

    Article  PubMed  Google Scholar 

  • Rolland, J. P., Krueger, M. W., & Goon, A. (2000). Multi-focal planes head-mounted displays. Applied Optics, 39(19), 3209–3215.

    Article  PubMed  Google Scholar 

  • Sacks, O. (2006). Stereo Sue. In O. Sacks (Ed.), The minds eye (2010). New York: Picador.

    Google Scholar 

  • Sacks, O. (2010). Persistence of vision: A journal. In O. Sacks (Ed.), The minds eye (2010). New York: Picador.

    Google Scholar 

  • Scarfe, P., & Hibbard, P. B. (2013). Reverse correlation reveals how observers sample visual information when estimating three-dimensional shape. Vision Research, 86, 115–127.

    Article  PubMed  Google Scholar 

  • Schlosberg, H. (1941). Stereoscopic depth from single pictures. The American Journal of Psychology, 54(4), 601–605.

    Article  Google Scholar 

  • Schwitzgebel, E. (2006). Do things look flat? In E. Schwitzgebel (Ed.), Perplexities of consciousness (2011). Cambridge, MA: MIT Press.

    Google Scholar 

  • Servos, P. (2000). Distance estimation in the visual and visuomotor systems. Experimental Brain Research, 130, 35–47.

    Article  PubMed  Google Scholar 

  • Servos, P., & Goodale, M. A. (1994). Binocular vision and the on-line control of human prehension. Experimental Brain Research, 98, 119–127.

    Article  PubMed  Google Scholar 

  • Servos, P., Goodale, M. A., & Jakobson, L. S. (1992). The role of binocular vision in prehension: A kinematic analysis. Vision Research, 32, 1513–1521.

    Article  PubMed  Google Scholar 

  • Simons, D. J., Franconeri, S. L., & Reimer, R. L. (2000). Change blindness in the absence of a visual disruption. Perception, 29(10), 1143–1154.

    Google Scholar 

  • Skelhorn, J., & Rowe, C. (2016). Cognition and the evolution of camouflage. Proceedings of the Royal Society B, 283(1825), 20152890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smithies, D. (2013). The nature of cognitive phenomenology. Philosophy Compass, 8(8), 744–754.

    Article  Google Scholar 

  • Strawson, G. (1994). Mental reality. Cambridge, MA: MIT Press.

    Google Scholar 

  • Thouless, R. H. (1931a). Regression to the real object I. British Journal of Psychology, 21(4), 339–359.

    Google Scholar 

  • Thouless, R. H. (1931b). Regression to the real object II. British Journal of Psychology, 22(1), 1–30.

    Google Scholar 

  • Todd, J. T., & Norman, J. F. (2003). The visual perception of 3-D shape from multiple cues: Are observers capable of perceiving metric structure? Perception and Psychophysics, 65, 31–47.

    Article  PubMed  Google Scholar 

  • Travis, C. S. (2004). The silence of the senses. Mind, 113(449), 57–94.

    Article  Google Scholar 

  • Travis, C. S. (2013). The silence of the senses. In Perception: Essays after Frege. Oxford: Oxford University Press.

    Google Scholar 

  • Tye, M. (1993). Blindsight, the absent qualia hypothesis, and the mystery of consciousness. Royal Institute of Philosophy Supplement, 34, 19–40.

    Article  Google Scholar 

  • Tye, M. (2003). Consciousness, color, and content. Philosophical Studies, 113(3), 233–235.

    Google Scholar 

  • Vishwanath, D. (2010). Visual information in surface and depth perception: Reconciling pictures and reality. In Albertazzi, van Tonder, & Vishwanath (Eds.), Perception beyond inference: The informational content of visual processes. Cambridge, MA: MIT Press.

    Google Scholar 

  • Vishwanath, D. (2013). Experimental phenomenology of visual 3d space: Considerations from evolution, perception, and philosophy. In L. Albertazzi (Ed.), Handbook of experimental phenomenology. Chichester: Wiley-Blackwell.

    Google Scholar 

  • Vishwanath, D. (2014). Towards a new theory of stereopsis. Psychological Review, 121(2), 151–178.

    Article  PubMed  Google Scholar 

  • Vishwanath, D. (2016). Induction of monocular stereopsis by altering focus distance: A test of Ames’s hypothesis. i-Perception, 7(2), 1–5.

    Google Scholar 

  • Vishwanath, D., & Blaser, E. (2010). Retinal blur and the perception of egocentric distance. Journal of Vision, 10(10), 26.

    Article  PubMed  Google Scholar 

  • Vishwanath, D., & Domini, F. (2013). Pictorial depth is not statistically optimal. Journal of Vision, 13(9), 613 (abstract).

    Google Scholar 

  • Vishwanath, D., & Hibbard, P. B. (2013). Seeing in 3D with just one eye: Stereopsis without binocular vision. Psychological Science, 24(9), 1673–1685.

    Article  PubMed  Google Scholar 

  • Volcic, R., Vishwanath, D., & Domini, F. (2014). Reaching into pictorial spaces. In Proceedings of SPIE, 9014: Human Vision and Electronic Imaging XIX.

    Google Scholar 

  • von Hildebrand, A. (1893). Das Problem der Form in der bildenden Kunst. Strasbourg: Heitz.

    Google Scholar 

  • von Rohr, M. (1903). The verant, a new instrument for viewing photographs from the correct standpoint. The Photographic Journal, 43, 279–290.

    Google Scholar 

  • Watt, S. J., Akeley, K., Girshick, A. R., & Banks, M. S. (2005). Achieving near-correct focus cues in a 3-D display using multiple image planes. In Proceedings of SPIE: Human Vision and Electronic Imaging, (IS&T/SPIE Paper Number 5666-53).

    Google Scholar 

  • Wijntjes, M. W. A., & Pont, S. C. (2012). Perceived depth in photographs: Humans perform close to veridical on a relative size task. Journal of Vision, 12(9), 277 (abstract).

    Google Scholar 

  • Wijntjes, M. W. A., Füzy, A., Verheij, M. E. S., Deetman, T., & Pont, S. C. (2016). The synoptic art experience. Art & Perception, 4(1–2), 73–105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Linton .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Linton, P. (2017). Stereopsis in the Absence of Binocular Disparity. In: The Perception and Cognition of Visual Space. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-66293-0_3

Download citation

Publish with us

Policies and ethics