Skip to main content

A Conceptual Safety Supervisor Definition and Evaluation Framework for Autonomous Systems

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10488))

Included in the following conference series:

Abstract

The verification and validation (V&V) of autonomous systems is a complex and difficult task, especially when artificial intelligence is used to achieve autonomy. However, without proper V&V, sufficient evidence to argue safety is not attainable. We propose in this work the use of a Safety Supervisor (SSV) to circumvent this issue. However, the design of an adequate SSV is a challenge in itself. To assist in this task, we present a conceptual framework and a corresponding metamodel, which are motivated and justified by existing work in the field. The conceptual framework supports the alignment of future research in the field of runtime safety monitoring. Our vision is for the different parts of the framework to be filled with exchangeable solutions so that a concrete SSV can be derived systematically and efficiently, and that new solutions can be embedded in it and get evaluated against existing approaches. To exemplify our vision, we present an SSV that is based on the ISO 22839 standard for forward collision mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, R., Feth, P., Schneider, D.: Safety engineering for autonomous vehicles. In: Workshop on Safety and Security of Intelligent Vehicles (2016)

    Google Scholar 

  2. Adler, R., Schaefer, I., Schule, T.: Model-based development of an adaptive vehicle stability control system. Modellbasierte Entwicklung von eingebetteten Fahrzeugfunktionen (2008)

    Google Scholar 

  3. Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end learning for self-driving cars (2016)

    Google Scholar 

  4. Eidehall, A.: Multi-target threat assessment for automotive applications. In: IEEE International Conference on Intelligent Transportation Systems (2011)

    Google Scholar 

  5. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Fact. J. Hum. Fact. Ergon. Soc. 37(1), 32–64 (1995)

    Article  Google Scholar 

  6. Feth, P., Bauer, T., Kuhn, T.: Virtual validation of cyber physical systems. In: Software Engineering & Management (2015)

    Google Scholar 

  7. FKA: Pelops. http://www.fka.de/pdf/pelops_whitepaper.pdf

  8. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: An efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013)

    Article  Google Scholar 

  9. ISO: 26262: Road vehicles - functional safety (2009)

    Google Scholar 

  10. ISO: 22839: Intelligent transport systems - forward vehicle collision mitigation systems - operation, performance, and verification requirements (2013)

    Google Scholar 

  11. Johansson, R., Nilsson, J.: The need for an environment perception block to address all asil levels simultaneously. In: IEEE Intelligent Vehicles Symposium (2016)

    Google Scholar 

  12. Jungnickel, R., Kohler, M., Korf, F.: Efficient automotive grid maps using a sensor ray based refinement process. In: IEEE Intelligent Vehicles Symposium (2016)

    Google Scholar 

  13. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and validation. SAE Int. J. Transp. Saf. 4(1), 15–24 (2016)

    Article  Google Scholar 

  14. Kuhn, T., Forster, T., Braun, T., Gotzhein, R.: FERAL - framework for simulator coupling on requirements and architecture level. In: IEEE/ACM International Conference on Formal Methods and Models for Codesign (MEMOCODE) (2013)

    Google Scholar 

  15. Kuhnt, F., Pfeiffer, M., Zimmer, P., Zimmerer, D., Gomer, J.M., Kaiser, V., Kohlhaas, R., Zollner, M.J.: Robust environment perception for the audi autonomous driving cup. In: IEEE International Conference on Intelligent Transportation Systems (2016)

    Google Scholar 

  16. Kurd, Z., Kelly, T., McDermid, J., Calinescu, R., Kwiatkowska, M.: Establishing a framework for dynamic risk management in ‘intelligent’ aero-egine control. In: International Conference on Computer Safety, Reliability and Security (2009)

    Google Scholar 

  17. Lefèvre, S., Vasquez, D., Laugier, C.: A survey on motion prediction and risk assessment for intelligent vehicles. ROBOMECH J. 1, 1 (2014)

    Article  Google Scholar 

  18. Mekki-Mokhtar, A., Blanquart, J.P., Guiochet, J., Powell, D., Roy, M.: Safety trigger conditions for critical autonomous systems. In: IEEE Pacific Rim International Symposium on Dependable Computing (2012)

    Google Scholar 

  19. Pegasus: Pegasus research project (2017). http://www.pegasus-projekt.info/en/

  20. Rohmer, E., Surya, P.N.S., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)

    Google Scholar 

  21. Rushby, J.: Runtime certification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 21–35. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89247-2_2

    Chapter  Google Scholar 

  22. SAE: J3016: Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles (2016)

    Google Scholar 

  23. Schreier, M., Willert, V., Adamy, J.: Bayesian, maneuver-based, long-term trajectory prediction and criticality assessment for driver assistance systems. In: IEEE Intelligent Vehicles Symposium (2014)

    Google Scholar 

  24. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001)

    Article  MathSciNet  Google Scholar 

  25. Stolte, T., Bagisch, G., Maurer, M.: Safety goals and functional safety requirements for actuation systems of automated vehicles. In: IEEE International Conference on Intelligent Transportation Systems (2016)

    Google Scholar 

  26. Tamke, A., Dang, T., Breuel, G.: A flexible method for criticality assessment in driver assistance systems. In: IEEE Intelligent Vehicles Symposium (2011)

    Google Scholar 

  27. Trapp, M., Schneider, D.: Safety assurance of open adaptive systems – a survey. In: Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.) Models@run.time. LNCS, vol. 8378, pp. 279–318. Springer, Cham (2014). doi:10.1007/978-3-319-08915-7_11

    Chapter  Google Scholar 

  28. van Nunen, E., Tzempetzis, D., Koudijs, G., Nijmeijer, H., van den Brand, M.: Towards a safety mechanism for platooning. In: IEEE Intelligent Vehicles Symposium (2016)

    Google Scholar 

  29. Wachenfeld, W., Winner, H.: The release of autonomous vehicles. In: Maurer, M., Gerdes, C.J., Lenz, B., Winner, H. (eds.) Autonomous Driving. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48847-8_21

    Google Scholar 

  30. Wiest, J., Karg, M., Kunz, F., Reuter, S., Kreßel, U., Dietmayer, K.: A probabilisitc maneuver prediction framework for self-learning vehicles with application to intersections. In: IEEE Intelligent Vehicles Symposium (2015)

    Google Scholar 

  31. Winner, H., Lotz, F., Bauer, E., Konigorski, U., Schreier, M., Adamy, J., Pfromm, M., Bruder, R., Lueke, S., Cieler, S.: PRORETA 3: comprehensive driver assistance by safety corridor and cooperative automation. In: Winner, H., Hakuli, S., Lotz, F., Singer, C. (eds.) Handbook of Driver Assistance Systems. Springer, Cham (2016). doi:10.1007/978-3-319-09840-1_19-1

    Chapter  Google Scholar 

Download references

Acknowledgments

The work presented in this paper was created in context of the Dependability Engineering Innovation for CPS - DEIS Project, which is funded by the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik Feth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Feth, P., Schneider, D., Adler, R. (2017). A Conceptual Safety Supervisor Definition and Evaluation Framework for Autonomous Systems. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2017. Lecture Notes in Computer Science(), vol 10488. Springer, Cham. https://doi.org/10.1007/978-3-319-66266-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66266-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66265-7

  • Online ISBN: 978-3-319-66266-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics