Skip to main content

Dependency Learning for QBF

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2017 (SAT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10491))

Abstract

Quantified Boolean Formulas (QBFs) can be used to succinctly encode problems from domains such as formal verification, planning, and synthesis. One of the main approaches to QBF solving is Quantified Conflict Driven Clause Learning (QCDCL). By default, QCDCL assigns variables in the order of their appearance in the quantifier prefix so as to account for dependencies among variables. Dependency schemes can be used to relax this restriction and exploit independence among variables in certain cases, but only at the cost of nontrivial interferences with the proof system underlying QCDCL. We propose a new technique for exploiting variable independence within QCDCL that allows solvers to learn variable dependencies on the fly. The resulting version of QCDCL enjoys improved propagation and increased flexibility in choosing variables for branching while retaining ordinary (long-distance) Q-resolution as its underlying proof system. In experiments on standard benchmark sets, an implementation of this algorithm shows performance comparable to state-of-the-art QBF solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not consider the pure literal rule as part of QBCP.

  2. 2.

    http://github.com/perebor/qute.

  3. 3.

    http://www.cs.cmu.edu/~wklieber/qcir-conv.py.

  4. 4.

    We cannot rule out that, for unsolved instances, Qute would have to learn a larger fraction of trivial dependencies before terminating. However, the solver tends to learn most dependencies at the beginning of a run, with the fraction of learned trivial dependencies quickly converging to a value that does not increase much until termination.

  5. 5.

    For sake of comparing with Qute in prefix mode, we disabled features recently added to DepQBF such as dynamic quantified blocked clause elimination [20] and oracle calls to the expansion-based solver Nenofex.

References

  1. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)

    Article  MATH  Google Scholar 

  2. Balabanov, V., Jiang, J.R., Janota, M., Widl, M.: Efficient extraction of QBF (counter)models from long-distance resolution proofs. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, Texas, USA, 25–30 January 2015, pp. 3694–3701. AAAI Press (2015)

    Google Scholar 

  3. Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005). doi:10.1007/11527695_5

    Chapter  Google Scholar 

  4. Lonsing, F., Biere, A.: A compact representation for syntactic dependencies in QBFs. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 398–411. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2_37

    Chapter  Google Scholar 

  5. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14186-7_14

    Chapter  Google Scholar 

  6. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 101–115. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6_10

    Chapter  Google Scholar 

  7. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate Quantified Boolean Formulae and its experimental evaluation. J. Autom. Reason. 28(2), 101–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 291–308. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_21

    Chapter  Google Scholar 

  9. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 354–370. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54577-5_20

    Chapter  Google Scholar 

  10. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res. 26, 371–416 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Goultiaeva, A., Bacchus, F.: Recovering and utilizing partial duality in QBF. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 83–99. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39071-5_8

    Chapter  Google Scholar 

  12. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_15

    Google Scholar 

  13. Janota, M.: On Q-resolution and CDCL QBF solving. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 402–418. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_25

    Google Scholar 

  14. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31612-8_10

    Chapter  Google Scholar 

  15. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 325–331. AAAI Press (2015)

    Google Scholar 

  16. Jordan, C., Klieber, W., Seidl, M.: Non-cnf QBF solving with QCIR. In: Darwiche, A. (ed.) Beyond NP, Papers from the 2016 AAAI Workshop. AAAI Workshops, vol. WS-16-05. AAAI Press (2016)

    Google Scholar 

  17. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14186-7_12

    Chapter  Google Scholar 

  19. Lonsing, F., Schemes, D., Solving, Search-Based QBF: Theory and Practice. PhD thesis, Johannes Kepler University, Linz, Austria, April 2012

    Google Scholar 

  20. Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based QBF solving by dynamic blocked clause elimination. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 418–433. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7_29

    Chapter  Google Scholar 

  21. Lonsing, F., Biere, A.: Nenofex: expanding NNF for QBF solving. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79719-7_19

    Chapter  Google Scholar 

  22. Malik, S., Zhang, L.: Boolean satisfiability from theoretical hardness to practical success. Commun. ACM 52(8), 76–82 (2009)

    Article  Google Scholar 

  23. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning sat solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 131–153. IOS Press (2009)

    Google Scholar 

  24. Meel, K.S., Vardi, M.Y., Chakraborty, S., Fremont, D.J., Seshia, S.A., Fried, D., Ivrii, A., Malik, S.: Constrained sampling and counting: universal hashing meets SAT solving. In Darwiche, A. (ed.) Beyond NP, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA. AAAI Workshops, February 12, 2016, vol. WS-16-05. AAAI Press (2016)

    Google Scholar 

  25. Peitl, T., Slivovsky, F., Szeider, S.: Long distance Q-resolution with dependency schemes. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 500–518. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_31

    Google Scholar 

  26. Pulina, L.: The ninth QBF solvers evaluation - preliminary report. In: Lonsing, F., Seidl, M. (eds.) Proceedings of the 4th International Workshop on Quantified Boolean Formulas (QBF 2016). CEUR Workshop Proceedings, vol. 1719, pp. 1–13. CEUR-WS.org (2016)

    Google Scholar 

  27. Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Kaivola, R., Wahl, T. (eds.) Formal Methods in Computer-Aided Design - FMCAD 2015, pp. 136–143. IEEE Computer Soc. (2015)

    Google Scholar 

  28. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom. Reason. 42(1), 77–97 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Scholl, C., Pigorsch, F.: The QBF solver AIGSolve. In: Lonsing, F., Seidl, M. (eds.) Proceedings of the 4th International Workshop on Quantified Boolean Formulas (QBF 2016). CEUR Workshop Proceedings, vol. 1719, pp. 55–62. CEUR-WS.org (2016)

    Google Scholar 

  30. Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes. Theoret. Comput. Sci. 612, 83–101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tentrup, L.: Non-prenex QBF solving using abstraction. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 393–401. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_24

    Google Scholar 

  32. Gelder, A.: Variable independence and resolution paths for quantified boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7_59

    Chapter  Google Scholar 

  33. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)

    Article  Google Scholar 

  34. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: Pileggi, L.T., Kuehlmann, A. (eds.) Proceedings of the 2002 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2002, San Jose, California, USA, 10–14 November 2002, pp. 442–449. ACM/IEEE Computer Society (2002)

    Google Scholar 

Download references

Acknowledgments

The authors thank Florian Lonsing for helpful discussions related to QCDCL. This research was kindly supported by FWF grants P27721 and W1255-N23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Slivovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Peitl, T., Slivovsky, F., Szeider, S. (2017). Dependency Learning for QBF. In: Gaspers, S., Walsh, T. (eds) Theory and Applications of Satisfiability Testing – SAT 2017. SAT 2017. Lecture Notes in Computer Science(), vol 10491. Springer, Cham. https://doi.org/10.1007/978-3-319-66263-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66263-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66262-6

  • Online ISBN: 978-3-319-66263-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics