Skip to main content

The Effects of Antibiotics on the Structure, Diversity, and Function of a Soil Microbial Community

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 51))

Abstract

Pharmaceutical antibiotics are widely applied to treat diseases of humans and animals or are added to animal feeds to improve the growth rate and feed efficiency. However, these antibiotics are often poorly metabolized and adsorbed by humans and animals. As a result, the majority of them are excreted unchanged, or as metabolites, in feces and urine and are then introduced to the soil with various materials such as manure or urban wastes. Since the application of manure or other organic amendments is a common practice throughout the world, the presence of antibiotics and their active metabolites in soils, especially in agricultural soils, is occurring quite often. Not only antibiotics but also considerable numbers of antibiotic-resistant bacteria and resistance genes (ARGs) are introduced into soil via organic fertilizer, thus raising serious environmental and human health concerns. This chapter, therefore, gives a brief overview of recent research in determining the impact of antibiotics, their bioactive metabolites, and ARGs that enter the soil on the structure, diversity, and function of soil microbial communities. The properties that are most often studied (e.g., bacterial and fungal populations, phospholipid fatty acids (PLFAs), community structure, community-level physiological profile (CLPP), enzymatic activity, nitrification/denitrification, iron reduction) and the appropriate techniques that are currently being used (e.g., PCR-DGGE of 16S rDNA, Biolog Ecoplates®, MicroResp™, gas chromatography (GC-MS), colorimetric quantification) are discussed. As was shown in the reviewed literature, antibiotics in soil differ significantly in their effectiveness on soil microorganisms, and both a positive and negative influence and a lack of any influence have been found. Possible changes were influenced by various natural and anthropogenic factors, such as soil texture, soil physicochemical properties, absorption into soil particles, degradation, and leaching. Furthermore, issues concerning dose-response and time-dependent effects of antibiotic impact on soil microbial communities were also analyzed. Additionally, methodological potential and limitations in determination and quantification of the effects of veterinary antibiotics applied with organic amendments on soil microbial communities and antibiotic resistance have been discussed. Finally, further research needs and directions concerning the effects of antibiotics on soil microbial communities have been outlined.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-66260-2_22.

This is a preview of subscription content, log in via an institution.

References

  • Akimenko YV, Kazev KS, Kolesnikov SI (2015) Impact assessment of soil contamination with antibiotics (for example, an ordinary chernozem). Am J Appl Sci 12(2):80–88

    Article  Google Scholar 

  • Andersen R, Grasset L, Thormann MN, Rochefort L, André-Jean Francez AJ (2010) Changes in microbial community structure and function following Sphagnum peatland restoration. Soil Biol Biochem 42:291–301

    Article  CAS  Google Scholar 

  • Aust M, Godlinski F, Travis GR, Hao X, McAllister TA, Leinweber P, Thiele-Bruhn S (2008) Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environ Poll 156:1243–1251

    Article  CAS  Google Scholar 

  • Baguer AJ, Jensen J, Krogh PH (2000) Effects of antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere 40:751–757

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, D’Angelo E (2013) Livestock antibiotic effects on nitrification, denitrification, and microbial community composition in soils. Open J Soil Sci 3:203–212

    Article  CAS  Google Scholar 

  • Bansal OP (2015) Effects of tetracycline on soil enzyme activities in an alluvial soil. Br J Med Med Res 5(8):1007–1016

    Article  Google Scholar 

  • Bansal OP, Srivastava V (2014) Impact of tetracycline on population dynamics of soil microorganisms. Int J Pure App Biosci 2(4):112–118

    Google Scholar 

  • Bastida F, Zsolnay A, Hernández T, García C (2008) Past, present and future of soil quality indices: a biological perspective. Geoderma 147:159–171

    Article  CAS  Google Scholar 

  • Blackwell PA, Kay P, Boxall ABA (2007) The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere 67:292–299

    Article  CAS  PubMed  Google Scholar 

  • Bohme L, Langer U, Bohme F (2005) Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric Ecosyst Environ 109:141–152

    Article  Google Scholar 

  • Boleas S, Alonso C, Pro J, Fernández C, Carbonell G, Tarazona JV (2005) Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system (MS·3) and influence of manure co-addition. J Hazard Mater 122:233–241

    Article  CAS  PubMed  Google Scholar 

  • Boxall A, Kolpin DW, Halling-Sørensen B, Tolls J (2003) Are veterinary medicines causing environmental risks? Environ Sci Technol 37:286A–294A

    Article  CAS  PubMed  Google Scholar 

  • Brandt KK, Sjøholm OR, Krogh KA, Halling-Sørensen B, Nybroe O (2009) Increased pollution-induced bacterial community tolerance to sulfadiazine in soil hotspots amended with artificial root exudates. Environ Sci Technol 43:2963–2968

    Article  CAS  PubMed  Google Scholar 

  • Bundy JG, Paton GI, Campbell CD (2004) Combined microbial community level and single species biosensor responses to monitor recovery of oil polluted soil. Soil Biol Biochem 36:1149–1159

    Article  CAS  Google Scholar 

  • Byarugaba DK (2009) Mechanisms of antimicrobial resistance. In: Sosa A de J, Byarugaba DK, Amabile C, Hsueh PR, Kariuki S, Okeke IN (eds) Antimicrobial resistance in developing countries. Springer, New York, pp 15–26

    Google Scholar 

  • Cao J, Dingge J, Wang C (2015) Interaction between earthworms and arbuscular mycorrhizal fungi on the degradation of oxytetracycline in soils. Soil Biol Biochem 90:283–292

    Article  CAS  Google Scholar 

  • Chapin FS, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D (1997) Biotic control over the functioning of ecosystems. Science 277:500–504

    Article  CAS  Google Scholar 

  • Chen W, Liu W, Pan N, Jiao W, Wang M (2013) Oxytetracycline on functions and structure of soil microbial community. J Soil Sci Plant Nutr 13(4):967–975

    Google Scholar 

  • Chen GX, He WW, Wang Y, Zou YD, Liang JB, Liao XD, Wu YB (2014) Effect of different oxytetracycline addition methods on its degradation behavior in soil. Sci Tot Environ 479:241–246

    Article  CAS  Google Scholar 

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microb Mol Biol Rev 65(2):232–260

    Article  CAS  Google Scholar 

  • Colinas C, Ingham E, Molina R (1994) Population responses of target and nontarget forest soil organisms to selected biocides. Soil Biol Biochem 26:41–47

    Article  CAS  Google Scholar 

  • Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42(2):73–91

    Article  CAS  PubMed  Google Scholar 

  • De la Torre A, Iglesias I, Carballo M, Ramrez P, Muoz M (2012) An approach for mapping the vulnerability of European Union soils to antibiotic contamination. Sci Tot Environ 414:672–679

    Article  CAS  Google Scholar 

  • De Liguoro M, Cibin V, Capolongo F, Halling-Sørensen B, Montesissa C (2003) Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere 52:203–212

    Article  PubMed  CAS  Google Scholar 

  • De Lipthay JR, Johnsen K, Albrechtsen HJ, Rosenberg P, Aamand J (2004) Bacterial diversity and community structure of a subsurface aquifer exposed to realistic low herbicide concentrations. FEMS Microbiol Ecol 49:59–69

    Article  PubMed  CAS  Google Scholar 

  • Derry AM, Staddon WJ, Trevors JT (1998) Functional diversity and community structure of microorganisms in uncontaminated and creosote-contaminated soils as determined by sole-carbon-source-utilization. World J Microbiol Biotechnol 14:571–578

    Article  Google Scholar 

  • Ding C, He J (2010) Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol 87:925–941

    Article  CAS  PubMed  Google Scholar 

  • Ding GC, Radl V, Schloter-Hai B, Jechalke S, Heuer H, Smalla K, Schloter M (2014) Dynamics of soil bacterial communities in response to repeated application of manure containing sulfadiazine. PLoS One 9(3):e92958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donoho AL (1984) Biochemical studies on monensin. J Anim Sci 58:1528–1539

    Article  CAS  PubMed  Google Scholar 

  • Du L, Liu W (2012) Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron Sustain Dev 32:309–327

    Article  CAS  Google Scholar 

  • EMEA (2008) Revised guideline on environmental impact assessment for veterinary medicinal products in support of the VICH guidelines GL 6 and GL 38. European Medicines Agency Guidance Document EMEA/CVMP/ERA/418282/2005-Rev.1

    Google Scholar 

  • Fang H, Han Y, Yin Y, Pan X, Yu Y (2014) Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil. Chemosphere 96:51–56

    Article  CAS  PubMed  Google Scholar 

  • Fründ HC, Schoesser A, Westendorp H (2000) Effects of tetracycline on the soil microbiota determined with microtiter plates and respiration measurement. Mitteilungen Dtsch Bodenkundl Gesellsch 93:244–247

    Google Scholar 

  • Furtula V, Farrell EG, Diarrassouba F, Rempel H, Pritchard J, Diarra MS (2010) Veterinary pharmaceuticals and antibiotic resistance of Escherichia coli isolates in poultry litter from commercial farms and controlled feeding trials. Poult Sci 89(1):180–188

    Article  CAS  PubMed  Google Scholar 

  • Garland JL (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microb Ecol 24:289–300

    Article  CAS  Google Scholar 

  • Gavalchin J, Katz SE (1994) The persistence of fecal-borne antibiotics in soil. J AOAC Int 77:481–485

    CAS  Google Scholar 

  • Gomez J, Mendez R, Lema JM (1996) The effect of antibiotics on nitrification processes. Appl Biochem Biotechnol 57/58:869–876

    Article  CAS  Google Scholar 

  • Gomez E, Ferreras L, Toresani S (2006) Soil bacterial functional diversity as influenced by organic amendment application. Bioresour Technol 97:1484–1489

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez IR, Watanabe N, Harter T, Glaser B, Radke M (2010) Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic Haploxeralf. J Soils Sediment 10:537–544

    Article  CAS  Google Scholar 

  • Halling-Sørensen B (2001) Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Arch Environ Contam Toxicol 40:451–460

    Article  PubMed  CAS  Google Scholar 

  • Halling-Sørensen B, Sengeløv G, Tjørnelund J (2002) Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch Environ Contam Toxicol 42:263–271

    Article  PubMed  CAS  Google Scholar 

  • Halling-Sørensen B, Sengeløv G, Ingerslev F, Jensen LB (2003) Reduced antimicrobial potentials of oxytetracycline, tylosin, sulfadiazine, streptomycin, ciprofloxacin, and olaquindox due to environmental processes. Arch Environ Contam Toxicol 44:7–16

    Article  PubMed  CAS  Google Scholar 

  • Halling-Sørensen B, Jacobsen AM, Jensen J, Sengelov G, Vaclavik E, Ingerslev F (2005) Dissipation and effects of chlortetracycline and tylosin in two agricultural soils: a field-scale study in southern Denmark. Environ Toxicol Chem 24:802–810

    Article  PubMed  Google Scholar 

  • Hammesfahr U, Heuer H, Manzke B, Smalla K, Thiele-Bruhn S (2008) Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol Biochem 40:1583–1591

    Article  CAS  Google Scholar 

  • Hammesfahr U, Kotzerkeb A, Lamshöftc M, Wilkeb BM, Kandelerd E, Thiele-Bruhn S (2010) Effects of sulfadiazine-contaminated fresh and stored manure on a soil microbial community. Eur J Soil Biol 47:61–68

    Article  Google Scholar 

  • Hamscher G, Szczęsny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionisation tandem mass spectrometry. Anal Chem 74:1509–1518

    Article  CAS  PubMed  Google Scholar 

  • Hamscher G, Pawelzick TH, Hoeper H, Nau H (2005) Different behaviour of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24:861–868

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Smalla K (2007) Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 9:657–666

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Schmidt H, Smalla K (2011) Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol 14:236–243

    Article  CAS  PubMed  Google Scholar 

  • Hou T, Xu RK, Tivari D, Zhao AZ (2007) Interaction between electrical double layers of soil colloids and Fe/Al oxides in suspensions. J Colloid Interface Sci 310:670–674

    Article  CAS  PubMed  Google Scholar 

  • Hu DF, Coats JR (2007) Aerobic degradation and photolysis of tylosin in water and soil. Environ Toxicol Chem 26:884–889

    Article  CAS  PubMed  Google Scholar 

  • Hu XG, Zhou QX, Luo Y (2010) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158(9):2992–2998

    Article  CAS  PubMed  Google Scholar 

  • Hund-Rinke K, Simon M, Lukow T (2004) Effects of tetracycline on the soil microflora: function, diversity, resistance. J Soils Sediment 4:11–16

    Article  CAS  Google Scholar 

  • Ingham ER, Coleman DC (1984) Effects of streptomycin, cycloheximide, fungizone, captan, carbofuran, cygon, and PCNB on soil microorganisms. Microbial Ecol 10:345–358

    Article  CAS  Google Scholar 

  • Insam H (1997) A new set of substrates proposed for community characterization in environmental samples. In: Insam H, Rangger A (eds) Microbial communities. Functional versus structural approaches. Springer, Berlin, pp 259–260

    Chapter  Google Scholar 

  • Jechalke S, Kopman C, Rosendahl I, Groeneweg J, Weichlet V, Krögerrecklenfort E, Brandes N, Nordwig M, Ding GC, Siemens J, Heuer H, Smalla K (2013) Increased abundance and transferability of resistance genes after field application of manure from sulfadiazine-treated pigs. Appl Environ Microbiol 79:1704–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K (2014) Fate and effects of veterinary antibiotics in soil. Trends Microbiol 22(9):536–545

    Article  CAS  PubMed  Google Scholar 

  • Jones A, Bruland G, Agrawal S, Vasudevan D (2005) Factors influencing the sorption of oxytetracycline to soils. Environ Toxicol Chem 24:761–770

    Article  CAS  PubMed  Google Scholar 

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indicat 8:1–13

    Article  CAS  Google Scholar 

  • Kong WD, Zhu YG, Fu BJ, Marschner P, He JZ (2006) The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environ Pollut 143:129–137

    Article  CAS  PubMed  Google Scholar 

  • Kopmann C, Jechalke S, Rosendahl I, Groeneweg J, Krögerrecklenfort E, Zimmerling U, Weichelt V, Siemens J, Amelung W, Heuer H, Smalla K (2013) Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. FEMS Microbiol Ecol 83:125–134

    Article  CAS  PubMed  Google Scholar 

  • Kotzerke A, Sharma S, Schauss K, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter M (2008) Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environ Pollut 153:315–322

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Gupta SC, Chander Y, Singh AK (2005) Antibiotic use in agriculture and its impact on the terrestrial environment. Adv Agron 87:1–54

    Article  CAS  Google Scholar 

  • Li QC, Allen HL, Willum A (2004) Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control. Soil Biol Biochem 36:571–579

    Article  CAS  Google Scholar 

  • Li Z, Chang PH, Jean JS, Jiang WT, Wang CJ (2010) Interaction between tetracycline and smectite in aqueous solution. J Colloid Interface Sci 341:311–319

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Ying GG, Tao R, Zhao JL, Yang JF, Zhao LF (2009) Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ Pollut 157:1636–1642

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wu J, Ying GG, Luo Z, Feng H (2012a) Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline. Appl Microbial Biotechnol 95:1615–1623

    Article  CAS  Google Scholar 

  • Liu W, Pan N, Chen W, Jiao W, Wang M (2012b) Effect of veterinary oxytetracycline on functional diversity of soil microbial community. Plant Soil Environ 58(7):295–301

    Article  CAS  Google Scholar 

  • Liu B, Li Y, Zhang X, Wang J, Gao M (2014) Combined effects of chlortetracycline and dissolved organic matter extracted from pig manure on the functional diversity of soil microbial community. Soil Biol Biochem 74:148–155

    Article  CAS  Google Scholar 

  • Lunestad BT, Goksøyr J (1990) Reduction in the antibacterial effect of oxytetracycline in sea water by complex formation with magnesium and calcium. Dis Aquat Org 9:67–72

    Article  CAS  Google Scholar 

  • Ma J, Lin H, Sun W, Fu J (2014) Soil microbial systems respond differentially to tetracycline, sulfamonomethoxine, and ciprofloxacin entering soil under pot experimental conditions alone and in combination. Environ Sci Pollut Res Int 2:7436–7448

    Article  CAS  Google Scholar 

  • Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Maliszewska-Kordybach B, Klimkowicz-Pawlas A, Smreczak B (2007) Ecotoxic effect of phenanthrene on nitrifying bacteria in soils of different properties. J Environ Qual 36:1635–1645

    Article  CAS  PubMed  Google Scholar 

  • Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–2902

    Article  CAS  PubMed  Google Scholar 

  • Mazel D, Davies J (1999) Antibiotic resistance in microbes. Cell Mol Life Sci 56(9-10):742–754

    Article  CAS  PubMed  Google Scholar 

  • McGuire JM, Boniece WS, Higgins CE, Hoehn MM, Stark WW, Westhead J, Wolfe RN (1961) Tylosin, a new antibiotic. I. Microbiological studies. Antibiot Chemother 11:320–327

    CAS  Google Scholar 

  • Müller AK, Westergaard K, Christensen S, Sørensen SJ (2002) The diversity and function of soil microbial communities exposed to different disturbances. Microb Ecol 44:49–58

    Article  PubMed  CAS  Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment, activity, ecology and application. Marcel Dekker, New York, pp 1–33

    Google Scholar 

  • Navas M, Benito M, Rodríguez I, Masaguer A (2011) Effect of five forage legume covers on soil quality at the Eastern plains of Venezuela. Appl Soil Ecol 49:242–249

    Article  Google Scholar 

  • Pan B, Qiu M, Wu M, Zhang D, Peng HB, Wu D (2012) The opposite impacts of Cu and Mg cations on dissolved organic matter-ofloxacin interaction. Environ Pollut 161:76–82

    Article  CAS  PubMed  Google Scholar 

  • Park H, Choung YK (2007) Degradation of antibiotics (tetracycline, sulfathiazole, ampicillin) using enzymes of glutathione S-transferase. Hum Ecol Risk Assess Int J 13(5):1147–1155

    Article  CAS  Google Scholar 

  • Pei ZG, Shan XQ, Zhang SZ, Kong JJ, Wen B, Zhang J, Zheng LR, Xie YN, Janssens K (2011) Insight to ternary complexes of co-adsorption of norfloxacin and Cu (II) onto montmorillonite at different using EXAFS. J Hazard Mater 186:842–848

    Article  CAS  PubMed  Google Scholar 

  • Pei Z, Yang S, Li L, Li C, Zhang S, Shan X, Wen B, Guo B (2014) effects of copper and aluminium on the adsorption of sulfathiazole and tylosin on peat and soil. Environ Pollut 184:579–585

    Article  CAS  PubMed  Google Scholar 

  • Pils JRV, Laird DA (2007) Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay–humic complexes. Environ Sci Technol 41:1928–1933

    Article  CAS  PubMed  Google Scholar 

  • Pinna MV, Castaldi P, Deiana P, Pusino A, Garau G (2012) Sorption behavior of sulfamethazine on unamended and manure-amended soils and short-term impact on soil microbial community. Ecotoxicol Environ Safe 84:234–242

    Article  CAS  Google Scholar 

  • Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles—a critique. FEMS Microbiol Ecol 42:1–14

    CAS  PubMed  Google Scholar 

  • Rabølle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline, and tylosin in soil. Chemosphere 40:715–722

    Article  PubMed  Google Scholar 

  • Reichel R, Rosendahl I, Peeters E, Focks A, Groeneweg J, Bierl R, Schlichting A, Amelung W, Thiele-Bruhn S (2013) Effects of manure from sulfadiazine- (SDZ) and difloxacin- (DIF) medicated pigs on the structural diversity of microorganisms in bulk and rhizosphere soil. Soil Biol Biochemi 62:82–91

    Article  CAS  Google Scholar 

  • Salyers AA, Amábile-Cuevas CF (1997) Why are antibiotic resistance genes so resistant to elimination? Antimicrob Agents Chemother 41:2321–2325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  PubMed  Google Scholar 

  • Schloter M, Dilly O, Munch JC (2003) Indicators for evaluating soil quality. Agric Ecosyst Environ 98:255–262

    Article  Google Scholar 

  • Schmitt H, Haapakangas H, van Beelen P (2005) Effects of antibiotics on soil microorganisms: time and nutrients influence pollution induced community tolerance. Soil Biol Biochem 37:1882–1892

    Article  CAS  Google Scholar 

  • Schulz S, Brankatschk R, Dümig A, Kögel-Knabner I, Schloter M, Zeyer J (2013) The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences 10:3983–3996

    Article  Google Scholar 

  • Smalla K, Wachtendorf U, Heuer H, Liu W, Forney L (1998) Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Appl Environ Microbiol 64:1220–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song WL, Ding YJ, Chiou CT, Li H (2010) Selected veterinary pharmaceuticals in agricultural water and soil from land application of animal manure. J Environ Qual 39:1211–1217

    Article  CAS  PubMed  Google Scholar 

  • Stoob K, Singer HP, Stettler S, Hartmann N, Mueller SR, Stamm CH (2006) Exhaustive extraction of sulfonamide antibiotics from aged agricultural soils using pressurized liquid extraction. J Chromatogr A 1128:1–9

    Article  CAS  PubMed  Google Scholar 

  • Swift MJ (1994) Maintaining the biological status of soil: a key to sustainable land management. In: Greenland DJ, Szabolcs I (eds) Soil resilience and sustainable land use. CAB, Wallingford, pp 33–39

    Google Scholar 

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils—a review. J Plant Nutr Soil Sci 166:145–167

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S (2005) Microbial inhibition by pharmaceutical antibiotics in different soils-dose-response relations determined with the iron (III) reduction test. Environ Toxicol Chem 24:869–876

    Article  CAS  PubMed  Google Scholar 

  • Thiele-Bruhn S, Beck IC (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59:457–465

    Article  CAS  PubMed  Google Scholar 

  • Thiele-Bruhn S, Seibicke T, Schulten HR, Leinweber P (2004) Sorption of sulfonamide pharmaceutical antibiotics at whole soils and particle-size fractions. J Environ Qual 33:1331–1342

    Article  CAS  PubMed  Google Scholar 

  • Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406

    Article  CAS  PubMed  Google Scholar 

  • Toth JD, Feng Y, Dou Z (2011) Veterinary antibiotics at environmentally relevant concentrations inhibit soil iron reduction and nitrification. Soil Boil Biochem 43:2470–2472

    Article  CAS  Google Scholar 

  • Ugochukwu N, Ebong E, Uzoma O, Fu QL, Huang L, Hu HQ (2011) Impacts of inorganic ions, and temperature on lead adsorption onto variable charge soils. In: 5th International conference on chemical, biological and environment science, Bangkok

    Google Scholar 

  • Vaclavik E, Halling-Sørensen B, Ingerslev F (2004) Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil. Chemosphere 56:667–676

    Article  CAS  PubMed  Google Scholar 

  • Wang XL, Yang K, Tao S, Xing BS (2007) Sorption of aromatic organic contaminants by biopolymers: effects of pH, copper (II) complexation, and cellulose coating. Environ Sci Technol 41:185–191

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Lin H, Sun W, Xia Y, Ma J, Fu J, Zang Z, Wu H, Qian M (2016) Variations in the fate and biological effects of sulfamethoxazole, norfloxacin and doxycycline in different vegetable–soil systems following manure application. J Hazard Mat 304:49–57

    Article  CAS  Google Scholar 

  • Wei X, Wu SC, Nie XP, Yediler A, Wong MH (2009) The effects of residual tetracycline on soil enzymatic activities and plant growth. J Environ Sci Health B 44(5):461–471

    Article  CAS  PubMed  Google Scholar 

  • Westergaard K, Müller AK, Christensen S, Bloem J, Sørensen SJ (2001) Effects of tylosin as a disturbance on the soil microbial community. Soil Biol Biochem 33:2061–2071

    Article  CAS  Google Scholar 

  • Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 57(10):1451–1470

    Article  CAS  PubMed  Google Scholar 

  • Xie WJ, Zhou JM, Wang HY, Chen XQ, Lu ZH, Yu JB, Chen XB (2009) Short-term effects of copper, cadmium and cypermethrin on dehydrogenase activity and microbial functional diversity in soils after long-term mineral or organic fertilization. Agric Ecosyst Environ 129:450–456

    Article  CAS  Google Scholar 

  • Xie XM, Liao M, Yang J, Chai JJ, Fang S, Wang RH (2012) Influence of rootexudates concentration on pyrene degradation and soil microbial characteristics in pyrene contaminated soil. Chemosphere 88:1190–1195

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Dick WA (2014) Growth of soil bacteria, on penicillin and neomycin, not previously exposed to these antibiotics. Sci Total Environ 493:445–453

    Article  CAS  PubMed  Google Scholar 

  • Zhang CB, Wang J, Liu WL, Zhu SX, Ge HL, Chang SX, Chang J, Ge Y (2010) Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecol Eng 36:62–68

    Article  Google Scholar 

  • Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA 110:3435–3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zielezny Y, Groeneweg J, Vereecken H, Tappe W (2006) Impact of sulfadiazine and chlortetracycline on soil bacterial community structure and respiratory activity. Soil Biol Biochem 38:2372–2380

    Article  CAS  Google Scholar 

  • Zuccato E, Bagnati R, Fioretti F, Natangelo M, Calamari D, Fanelli R (2001) Environmental loads and detection of pharmaceuticals in Italy. In: Kummerer K (ed) Pharmaceuticals in the environment. Springer, Berlin, pp 19–27

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Piotrowska-Długosz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piotrowska-Długosz, A. (2017). The Effects of Antibiotics on the Structure, Diversity, and Function of a Soil Microbial Community. In: Hashmi, M., Strezov, V., Varma, A. (eds) Antibiotics and Antibiotics Resistance Genes in Soils. Soil Biology, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-319-66260-2_15

Download citation

Publish with us

Policies and ethics