Skip to main content

Recent Advances in Methods for the Detection of Antibiotics and Antibiotics Resistance Genes in Soil

  • Chapter
  • First Online:
Book cover Antibiotics and Antibiotics Resistance Genes in Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 51))

Abstract

Soil is the substrate from where antibiotic synthesis originally evolved and majority of antibiotics in clinical use today were extracted from soil. Hence, soil is a diverse and determinant source of antibiotics. Unmonitored, overuse, and misuse of antibiotics have aggregated resistance in bacteria and resulted antibiotic resistance genes (ARGs). Worldwide, higher ARG levels have been detected and well reported. ARGs extraction from soil sample is a multistep, complex, and time-consuming process. The present chapter reviews the recent advancements of analytical, molecular, and other recent applied technologies for the detection, characterization, and quantification of antibiotics and ARG in the soil matrix.

Due to the advancement in technology, accuracy, precision, sophistication, and less turnaround time, molecular methods of antibiotic and ARGs screening are replacing the conventional techniques. Continued development of standard protocols, monitoring, and metagenomic technique are the dire needs for the safe survival of life. Risk factor associated with the unmonitored use of antibiotics, need to be understood and publicize. For field, epidemic outspread and remote area monitoring of ARGs, and with the advancement of information technology (IT) and globalization, portable, inexpensive, and user-friendly diagnostic devices became dream of users. Keeping in view all these prospects, researchers have developed antimicrobial resistance dashboard application and point of care (POC), i.e., lab on a chip. But, successful assessment of antibiotics and ARGs requires appropriate research questions. This chapter summarizes various analytical, molecular, and applied techniques, their strengths, and limitations for the detection and quantification of antibiotic resistance genes (ARGs) and bacteria (ARB).

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-66260-2_22.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahammad ZS, Sreekrishnan TR, Hands CL, Knapp CW, Graham DW (2014) Increased waterborne blaNDM-1 resistance gene abundances associated with seasonal human pilgrimages to the upper Ganges River. Environ Sci Technol 48(5):3014–3020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albero B, Sánchez-Brunete C, Miguel E, Pérez RA, Tadeo JL (2012) Determination of selected organic contaminants in soil by pressurized liquid extraction and gas chromatography tandem mass spectrometry with in situ derivatization. J Chromatogr A 1248:9–17

    Article  CAS  PubMed  Google Scholar 

  • Albero B, Sanchez-Brunete C, Garcia-Valcarcel AI, Pérez RA, Tadeo JL (2015) Ultrasound-assisted extraction of emerging contaminants from environmental samples. TrAC Trends Anal Chem 71:110–118

    Article  CAS  Google Scholar 

  • Anjum MF (2015) Screening methods for the detection of antimicrobial resistance genes present in bacterial isolates and the microbiota. Future Microbiol 10(3):317–320

    Article  CAS  PubMed  Google Scholar 

  • Ardrey RE (2003) Liquid chromatography—mass spectrometry: an introduction. Wiley, Chichester, pp 1–288. ISBNs: 0-471-49799-1 (HB); 0-47-49801-7 (PB)

    Google Scholar 

  • Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ (2014) Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front Microbiol 5:1–14

    Article  Google Scholar 

  • Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA (2009) Mobile phone based clinical microscopy for global health applications. PLoS One 4:6320

    Article  Google Scholar 

  • Byarugaba DK (2004) A view on antimicrobial resistance in developing countries and responsible risk factors. Int J Antimicrob Agents 24:105–110

    Article  CAS  PubMed  Google Scholar 

  • Chan M (2012) Antimicrobial resistance in the European Union and the world. WHO. http://www.who.int/dg/speeches/2012/amr_20120314/en/index.html

  • Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI (2001) Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol 67:1494–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin ST, Marriott PJ (2014) Multidimensional gas chromatography beyond simple volatiles separation. Chem Commun 50:8819–8833

    Article  CAS  Google Scholar 

  • Christen V, Hickmann S, Rechenberg B, Fent K (2010) Highly active human pharmaceuticals in aquatic systems: a concept for their identification based on their mode of action. Aquat Toxicol 96:167–181

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta D, Sengupta TK (2015) Techniques and methods: detection of antibiotics in environmental samples. In: Méndez-Vilas A (ed) The battle against microbial pathogens: basic science, technological advances and educational programs. FORMATEX, Badajoz, pp 1084–1090

    Google Scholar 

  • de Castro AP, Fernandes GDR, Franco OL (2014) Insights into novel antimicrobial compounds and antibiotic resistance genes from soil metagenomes. Front Microbiol 5:1–9

    Article  CAS  Google Scholar 

  • Donato JJ, Moe LA, Converse BJ, Smart KD, Berklein FC, McManus PS, Handelsman J (2010) Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted biofunctional proteins. Appl Environ Microbiol 76:4396–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durso LM, Miller DN, Wienhold B (2012) Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes. PLoS One 7:48325

    Article  Google Scholar 

  • Edgar R, Friedman N, Molshanski-Mor S, Qimron U (2011) Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl Environ Microbiol 78(3):744–751

    Article  PubMed  Google Scholar 

  • Fang H, Wang HF, Cai L, Yu YL (2015) Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey. Environ Sci Technol 49:1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick D, Walsh F (2016) Antibiotic resistance genes across a wide variety of metagenomes. FEMS Microbiol Ecol 92(2):1–8

    Article  Google Scholar 

  • Garder JL, Moorman TB, Soupir ML (2014) Transport and persistence of tylosin-resistant enterococci, genes, and tylosin in soil and drainage water from fields receiving swine manure. J Environ Qual 43:1484–1493

    Article  PubMed  Google Scholar 

  • Garrison AW, Pope JD, Allen FR (1976) GC/MS Analysis of organic compounds in domestic wastewaters. In: Keith LH (ed) Identification and analysis of organic pollutants in water. Ann Arbor Science, Ann Arbor, MI, pp 517–556

    Google Scholar 

  • Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR, Rondon MR (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68:4301–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo F, Zhang T (2013) Biases during DNA extraction of activated sludge samples revealed by high throughput sequences. Appl Microbiol Biotechnol 97:4607–4616

    Article  CAS  PubMed  Google Scholar 

  • Henry CS, Overbeek R, Xia FF, Best AA, Glass E, Gilbert J, Larsen P, Edwards R, Disz T, Meyer F et al (2011) Connecting genotype to phenotype in the era of high-throughput sequencing. Biochim Biophys Acta 1810(10):967–977

    Article  CAS  PubMed  Google Scholar 

  • Hersher R (2012) Indian TB cases highlight need for drug-resistance tests. Nat Med 18(3):333

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Smalla K (2007) Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 9:657–666. doi:10.1111/j.1462-2920.2006.01185.x

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Solehati Q, Zimmerling U, Kleineidam K, Schloter M, Muller T, Focks A, Thiele-Bruhn S, Smalla K (2011) Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Appl Environ Microbiol 77:2527–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hignite C, Azarnoff DL (1977) Drugs and drug metabolites as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sci 20(2):337–341

    Article  CAS  PubMed  Google Scholar 

  • Hoorfar J, Malorney B, Abdulmawjood A, Cook N, Wagner M, Fach P (2004) Practical considerations in design of internal amplification controls for diagnostic PCR assays. J Clin Microbiol 42:1863–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennerwein MK, Eschner M, Gröger T, Wilharm T, Zimmermann R (2014) Complete group-type quantification of petroleum middle distillates based on comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS) and visual basic scripting. Energy Fuels 28(9):5670–5681

    Article  CAS  Google Scholar 

  • Jindal A, Kocherginskaya S, Mehboob A, Robert M, Mackie RI, Raskin L, Zilles JL (2006) Antimicrobial use and resistance in swine waste treatment systems. Appl Environ Microbiol 72:7813–7820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kathi S (2017) An overview of extraction, clean-up and instrumentation techniques for quantification of soil-bound xenobiotic compounds. Xenobiotics Soil Environ 49:101–118

    Article  Google Scholar 

  • Knapp CW, Dolfing J, Ehlert PAI, Graham DW (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587. doi:10.1021/es901221x

    Article  CAS  PubMed  Google Scholar 

  • Knappik M, Dance DAB, Rattanavong S, Pierret A, Ribolzi O, Davong V, Silisouk J, Vongsouvath M, Newton PN, Dittrich S (2015) Evaluation of molecular methods to improve the detection of Burkholderia pseudomallei in soil and water samples from Laos. Appl Environ Microbiol 81(11):3722–3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koike S, Krapac IG, Oliver HD, Yannarell AC, Chee-Sanford JC, Aminov RI, Mackie RI (2007) Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Appl Environ Microbiol 73:4813–4823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostic T, Ellis M, Williams MR, Stedtfeld TM, Kaneene JB, Stedtfeld RD, Hashsham SA (2015) Thirty-minute screening of antibiotic resistance genes in bacterial isolates with minimal sample preparation in static self-dispensing 64 and 384 assay cards. Appl Microbiol Biotechnol 99:7711–7722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreuzig R, Höltge S (2005) Investigations on the fate of sulfadiazine in manured soil: laboratory experiments test plot studies. Environ Toxicol Chem 24:771–776

    Article  CAS  PubMed  Google Scholar 

  • Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegard B, Soderstrom H, Larsson DGJ (2011) Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One 6:e17038. doi:10.1371/journal.pone.0017038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang KS, Anderson JM, Schwarz S, Williamson L, Handelsman J, Singer RS (2010) Novel florfenicol and chloramphenicol resistance gene discovered in Alaskan soil by using functional metagenomics. Appl Environ Microbiol 76:5321–5326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MF, Chen YH, Hsu HJ, Peng CF (2010) One-tube loop-mediated isothermal amplification combined with restriction endonuclease digestion and ELISA for colorimetric detection of resistance to isoniazid ethambutol and streptomycin in Mycobacterium tuberculosis isolates. J Microbiol Methods 83:53–58

    Article  CAS  PubMed  Google Scholar 

  • Li C, Li Z, Jia H, Yan J (2011) One-step ultrasensitive detection of micro RNAs with loop-mediated isothermal amplification (LAMP). Chem Commun 47:2595–2597

    Article  CAS  Google Scholar 

  • Lim HK, Chung EJ, Kim JC, Choi GJ, Jang KS, Chung YR (2005) Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl Environ Microbiol 71:7768–7777. doi:10.1128/AEM.71.12.7768-7777.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B, Cole JR, Hashsham SA, Tiedje JM, Stanton TB (2012) In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci USA 109(5, 1691):–1696

    Google Scholar 

  • Luby E, Ibekwe AM, Zilles J, Pruden A (2016) Molecular methods for assessment of antibiotic resistance in agricultural ecosystems: prospects and challenges. J Environ Qual 45(2):441–453

    Article  CAS  PubMed  Google Scholar 

  • Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E (2012) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:115–122. doi:10.1093/nar/gkr1044

    Article  Google Scholar 

  • McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, Ejim L, Kalan L, King AM, Koteva K, Morar M, Mulvey MR, O’Brien JS, Pawlowski AC, Piddock LJ, Spanogiannopoulos P, Sutherland AD, Tang I, Taylor PL, Thaker M, Wang W, Yan M, Yu T, Wright GD (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57:3348–3357. doi:10.1128/AAC.00419-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McEachran AD, Blackwell BR, Hanson JD, Wooten KJ, Mayer GD, Cox SB, Smith PN (2015) antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. Environ Health Perspect 123(4):337–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKinney CW, Pruden A (2012) Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environ Sci Technol 46(24):13393–13400. doi:10.1021/es303652q

    Article  CAS  PubMed  Google Scholar 

  • Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server: a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386. doi:10.1186/1471-2105-9-386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitani K, Kataoka H (2006) Determination of fluoroquinolones in environmental waters by in-tube solid-phase microextraction coupled with liquid chromatography–tandem mass spectrometry. Anal Chim Acta 562(1):16–22

    Article  CAS  Google Scholar 

  • Mori Y, Nagamine K, Tomita N, Notomi T (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289(1):150–154

    Article  CAS  PubMed  Google Scholar 

  • Nandi S, Maurer JJ, Hofacre C, Summers AO (2004) Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc Natl Acad Sci USA 101:7118–7122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesme J, Simonet P (2015) The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ Microbiol 17:913–930. doi:10.1111/1462-2920.12631

    Article  PubMed  Google Scholar 

  • Nesme J, Cécillon S, Delmont TO, Monier JM, Vogel TM, Simonet P (2014) Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr Biol 24:1096–1100. doi:10.1016/j.cub.2014.03.036

    Article  CAS  PubMed  Google Scholar 

  • Niessen WMA (2010) Group specific fragmentation of pesticides and related compounds in liquid chromatography–tandem mass spectrometry. J Chromatogr A 1217(25):4061–4070

    Article  CAS  PubMed  Google Scholar 

  • Nolvachai Y, Kulsing C, Marriott PJ (2015) Pesticides analysis: advantages of increased dimensionality in gas chromatography and mass spectrometry. Crit Rev Environ Sci Technol 45(19):2135–2173

    Article  CAS  Google Scholar 

  • Ok YS, Kim SC, Kim KR, Lee SS, Moon DH, Lim K, Sung JK, Hur SO, Yang JE (2011) Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environ Monit Assess 174(1):693–701

    Article  CAS  PubMed  Google Scholar 

  • Okeke IN, Laxminarayan R, Bhutta ZA, Duse AG, Jenkins P, O’Brien T, Klugman KP (2005) Antimicrobial resistance in developing countries. Part I: Recent trends and current status. Lancet Infect Dis 5:481–493. doi:10.1016/S1473-3099(05)70189-4

    Article  CAS  PubMed  Google Scholar 

  • Pei R, Kim SC, Carlson KH, Pruden A (2006) Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res 40:2427–2435. doi:10.1016/j.watres.2006.04.017

    Article  CAS  PubMed  Google Scholar 

  • Pena-Abaurrea M, Jobst KJ, Ruffolo R, Shen L, McCrindle R, Helm PA, Reiner EJ (2014) Identification of potential novel bioaccumulative and persistent chemicals in sediments from Ontario (Canada) using scripting approaches with GC× GC-TOF MS analysis. Environ Sci Technol 48(16):9591–9599

    Article  CAS  PubMed  Google Scholar 

  • Phillips R (2004) Antibiotic usage in animals rise in 2004: life-saving compounds used to reduce animal pain, suffering and death. Animal Health Institute.

    Google Scholar 

  • Pintado-Herrera MG, GonzálezMazo E, LaraMartín PA (2016) In-cell clean-up pressurized liquid extraction and gas chromatography–tandem mass spectrometry determination of hydrophobic persistent and emerging organic pollutants in coastal sediments. J Chromatogr A 1429:107–118

    Article  CAS  PubMed  Google Scholar 

  • Planche C, Ratel J, Mercier F, Blinet P, Debrauwer L, Engel E (2015) Assessment of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry based methods for investigating 206 dioxin-like micropollutants in animal-derived food matrices. J Chromatogr A 1392:74–81

    Article  CAS  PubMed  Google Scholar 

  • Pozo OJ, Guerrero C, Sancho JV, Ibáñez M, Pitarch E, Hogendoorn E, Hernández F (2006) Efficient approach for the reliable quantification and confirmation of antibiotics in water using on-line solid-phase extraction liquid chromatography/tandem mass spectrometry. J Chromatogr A 1103:83–93

    Article  CAS  PubMed  Google Scholar 

  • Pruden A, Pei R, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol 40:7445–7450. doi:10.1021/es060413l

    Article  CAS  PubMed  Google Scholar 

  • Regueiro J, Llompart M, Garcia-Jares C, GarciaMonteagudo JC, Cela R (2008) Ultrasound-assisted emulsification–microextraction of emergent contaminants and pesticides in environmental waters. J Chromatogr A 1190(1):27–38

    Article  CAS  PubMed  Google Scholar 

  • Rehman MS, Rashid N, Ashfaq M, Saif A, Ahmad N, Han J (2015) Global risk of pharmaceutical contamination from highly populated developing countries. Chemosphere 138:1045–1055

    Article  CAS  PubMed  Google Scholar 

  • Richardson SD, Ternes TA (2014) Water analysis: emerging contaminants and current issues. Anal Chem 86(6):2813–2848

    Article  CAS  PubMed  Google Scholar 

  • Richter P, Jiménez M, Salazar R, Maricán A (2006) Ultrasound-assisted pressurized solvent extraction for aliphatic and polycyclic aromatic hydrocarbons from soils. J Chromatogr A 1132(1):15–20

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez RA, Bounty S, Linden KG (2013) Long-range quantitative PCR for determining inactivation of adenovirus 2 by ultraviolet light. J Appl Microbiol 114:1854–1865. doi:10.1111/jam.12169

    Article  PubMed  Google Scholar 

  • Salvia MV, Fieu M, Vulliet E (2015) Determination of tetracycline and fluoroquinolone antibiotics at trace levels in sludge and soil. Appl Environ Soil Sci 2015:Article ID 435741. 10 pages

    Article  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs). Chemosphere 65:725–759

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Okubo T, Usui M, Yokota S, Izumiyama S, Tamura Y (2014) Association of veterinary third-generation cephalosporin use with the risk of emergence of extended-spectrum-cephalosporin resistance in Escherichia coli from dairy cattle in Japan. PLoS One 9(4):e96101. doi:10.1371/journal.pone.0096101

    Article  PubMed  PubMed Central  Google Scholar 

  • Seitz P, Blokesch M (2013) Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol Rev 37:336–363. doi:10.1111/j.1574-6976.2012.00353.x

    Article  CAS  PubMed  Google Scholar 

  • Shang D, Kim M, Haberl M (2014) Rapid and sensitive method for the determination of polycyclic aromatic hydrocarbons in soils using pseudo multiple reaction monitoring gas chromatography/tandem mass spectrometry. J Chromatogr A 1334:118–125

    Article  CAS  PubMed  Google Scholar 

  • Shen F, Sun B, Kreutz JE, Davydova EK, Du W, Reddy PL, Joseph LJ, Ismagilov RF (2011) Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational Slip Chip tested with HIV and hepatitis C viral load. J Am Chem Soc 133(44):17705–17712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MS, Yang RK, Knapp CW, Niu Y, Peak N, Hanfelt MM, Galland JC, Graham DW (2004) Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR. Appl Environ Microbiol 70:7372–7377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spellberg B, Bartlett J, Gilbert D (2013) The future of antibiotics and resistance. N Engl J Med 368:299–302. doi:10.1056/NEJMp1215093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stedtfeld RD, Tourlousse DM, Seyrig G, Stedtfeld TM, Kronlein M, Price S, Hashsham SA (2012) Gene-Z: a device for point of care genetic testing using a smartphone. Lab Chip 12:1454–1462. doi:10.1039/c2lc21226a

    Article  CAS  PubMed  Google Scholar 

  • Stedtfeld RD, Williams MR, Fakher U, Johnson TA, Stedtfeld TM, Wang F, Khalife WT, Hughes M, Etchebarne BE, Tiedje JM, Hashsham SA (2016) Antimicrobial resistance dashboard application for mapping environmental occurrence and resistant pathogens. FEMS Microbiol Ecol 92(3):fiw020. doi:10.1093/femsec/fiw020

    Article  PubMed  Google Scholar 

  • Stoob K, Singer HP, Goetz CW, Ruff M, Mueller SR (2005) Fully automated online solid phase extraction coupled directly to liquid chromatography–tandem mass spectrometry: quantification of sulfonamide antibiotics, neutral and acidic pesticides at low concentrations in surface waters. J Chromatogr A 1097:138–147

    Article  CAS  PubMed  Google Scholar 

  • Su JQ, Wei B, Xu CY, Qiao ZYG (2014) Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. Environ Int 65:9–15. doi:10.1016/j.envint.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  • Szulejko JE, Kim KH, Brown RJ, Bae MS (2014) Review of progress in solvent-extraction techniques for the determination of polyaromatic hydrocarbons as airborne pollutants. TrAC Trends Anal Chem 61:40–48

    Article  CAS  Google Scholar 

  • Ternes TA, Hirsch R, Mueller J, Haberer K (1998) Methods for the determination of neutral drugs as well as betablockers and β2-sympathomimetics in aqueous matrices using GC/MS and LC/MS/MS. Fresenius J Anal Chem 362:329–340

    Article  CAS  Google Scholar 

  • Thomas T, Gilbert J, Meyer F (2012) Metagenomics—a guide from sampling to data analysis Microbial Inform Exp 2(3): 12 pages.

    Google Scholar 

  • Tranchida PQ, Franchina FA, Dugo P, Mondello L (2016) Comprehensive two-dimensional gas chromatography-mass spectrometry: recent evolution and current trends. Mass Spectrom Rev 35(4):524–534

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama T, Miyazaki K (2009) Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 20:616–622

    Article  CAS  PubMed  Google Scholar 

  • Verma B, Kumar P, Karthik L, Dhanasekaran D, Babalola OO, Banakar SP (2015) Gas chromatography—mass spectrometry analysis and antibacterial activity of bluish-green pigment from Pseudomonas sp. JJTBVK (KF836502). Braz Arch Biol Technol 58(4):628–635

    Article  CAS  Google Scholar 

  • Wagner M, Smidt H, Loy A, Zhou J (2007) Unravelling microbial communities with DNA-microarrays: challenges and future directions. Microb Ecol 53:498–506. doi:10.1007/s00248-006-9197-7

    Article  CAS  PubMed  Google Scholar 

  • Wang FH, Qiao M, Su JQ, Chen Z, Zhou X, Zhu YG (2014) High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ Sci Technol 48:9079–9085

    Article  CAS  PubMed  Google Scholar 

  • WHO (2012) The evolving threat of antimicrobial resistance: options for action. World Health Organization, Geneva

    Google Scholar 

  • WHO (2014) Antimicrobial resistance: global report of surveillance. World Health Organization, Geneva

    Google Scholar 

  • Wichmann F, Udikovic-Kolic N, Andrew S, Handelsman J (2014) Diverse antibiotic resistance genes in dairy cow manure. mBio 5(2):e01017-13. doi:10.1128/mBio.01017-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao KQ, Li B, Ma L, Bao P, Zhou X, Zhang T, Zhu YG (2016) Metagenomic profiles of antibiotic resistance genes in paddy soils from South China. FEMS Microbiol Ecol 92(3):1–6

    Article  Google Scholar 

  • Zhang S, Gu J, Wang C, Wang P, Jiao S, He Z, Han B (2015) Characterization of antibiotics and antibiotic resistance genes on an ecological farm system. J Chem, doi:10.1155/2015/526143, 8 pages

  • Zhou Z, Raskin L, Zilles JL (2009) Identification of macrolide resistant microorganisms on antimicrobial-free swine farms. Appl Environ Microbiol 75:5814–5820. doi:10.1128/AEM.00977-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Wang Y, Lin J (2012) Functional cloning and characterization of antibiotic resistance genes from the chicken gut microbiome. Appl Environ Microbiol 78:3028–3032. doi:10.1128/AEM.06920-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YG, Johnson TA, Su TQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA 110:3435–3440. doi:10.1073/pnas.1222743110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosheen Mirza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mubarak, H., Mirza, N., Hashmi, M.Z. (2017). Recent Advances in Methods for the Detection of Antibiotics and Antibiotics Resistance Genes in Soil. In: Hashmi, M., Strezov, V., Varma, A. (eds) Antibiotics and Antibiotics Resistance Genes in Soils. Soil Biology, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-319-66260-2_13

Download citation

Publish with us

Policies and ethics