Skip to main content

Platelets as Regulators of Thrombosis and Inflammation

  • Chapter
  • First Online:
Platelets, Haemostasis and Inflammation

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 5))

Abstract

This chapter describes features of blood platelets that serve in the regulation of thrombosis and inflammation. Classically, platelets have been known for decades to promote hemostasis of wounds and arterial thrombosis, in particular atherothrombosis following atherosclerotic plaque rupture. More recently, the importance of platelets for the development of deep vein thrombosis has been recognized. But platelets also link thrombosis and inflammation in “immunothrombosis” within microvessels. In a collaborative “effort” of several cell types, plasma proteins, and neutrophil extracellular traps, platelets orchestrate the recognition, trapping, and killing of pathogens. Immunothrombosis also occurs in microvessels during ischemia–reperfusion injury, e.g., following myocardial infarction. In acute and chronic inflammation, platelets further cooperate with neutrophils, monocytes, and lymphocytes without clot formation to promote physiological—and pathophysiological—responses to pathogens or auto-antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Chu SG, Becker RC, Berger PB, et al. Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. J Thromb Haemost. 2010;8:148–56.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang L, Orban M, Lorenz M, et al. A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. J Exp Med. 2012;209:2165–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Junt T, Schulze H, Chen Z, et al. Dynamic visualization of thrombopoiesis within bone marrow. Science. 2007;317:1767–70.

    Article  CAS  PubMed  Google Scholar 

  4. Denis CV, Wagner DD. Platelet adhesion receptors and their ligands in mouse models of thrombosis. Arterioscler Thromb Vasc Biol. 2007;27:728–39.

    Article  CAS  PubMed  Google Scholar 

  5. Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell. 1996;84:289–97.

    Article  CAS  PubMed  Google Scholar 

  6. Reininger AJ, Bernlochner I, Penz SM, et al. A 2-step mechanism of arterial thrombus formation induced by human atherosclerotic plaques. J Am Coll Cardiol. 2010;55:1147–58.

    Article  CAS  PubMed  Google Scholar 

  7. Bergmeier W, Piffath CL, Goerge T, et al. The role of platelet adhesion receptor GPIbalpha far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proc Natl Acad Sci USA. 2006;103:16900–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nieswandt B, Brakebusch C, Bergmeier W, et al. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J. 2001;20:2120–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nesbitt WS, Westein E, Tovar-Lopez FJ, et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med. 2009;15:665–73.

    Article  CAS  PubMed  Google Scholar 

  10. Ruggeri ZM, Orje JN, Habermann R, Federici AB, Reininger AJ. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood. 2006;108:1903–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gurbel PA, Tantry US. Combination antithrombotic therapies. Circulation. 2010;121:569–83.

    Article  PubMed  Google Scholar 

  12. Stefanini L, Roden RC, Bergmeier W. CalDAG-GEFI is at the nexus of calcium-dependent platelet activation. Blood. 2009;114:2506–14.

    Article  CAS  PubMed  Google Scholar 

  13. Cifuni SM, Wagner DD, Bergmeier W. CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets. Blood. 2008;112:1696–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crittenden JR, Bergmeier W, Zhang Y, et al. CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med. 2004;10:982–6.

    Article  CAS  PubMed  Google Scholar 

  15. Chrzanowska-Wodnicka M, Smyth SS, Schoenwaelder SM, Fischer TH, White GC. Rap1b is required for normal platelet function and hemostasis in mice. J Clin Invest. 2005;115:680–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McNicol A, Israels SJ. Platelet dense granules: structure, function and implications for haemostasis. Thromb Res. 1999;95:1–18.

    Article  CAS  PubMed  Google Scholar 

  17. Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med. 2007;357:2482–94.

    Article  CAS  PubMed  Google Scholar 

  18. Gachet C, Leon C, Hechler B. The platelet P2 receptors in arterial thrombosis. Blood Cells Mol Dis. 2006;36:223–7.

    Article  CAS  PubMed  Google Scholar 

  19. Jin J, Daniel JL, Kunapuli SP. Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem. 1998;273:2030–4.

    Article  CAS  PubMed  Google Scholar 

  20. Leon C, Hechler B, Freund M, et al. Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-null mice. J Clin Invest. 1999;104:1731–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kauffenstein G, Bergmeier W, Eckly A, et al. The P2Y(12) receptor induces platelet aggregation through weak activation of the alpha(IIb)beta(3) integrin—a phosphoinositide 3-kinase-dependent mechanism. FEBS Lett. 2001;505:281–90.

    Article  CAS  PubMed  Google Scholar 

  22. Collet JP, Montalescot G. P2Y12 inhibitors: thienopyridines and direct oral inhibitors. Hamostaseologie. 2009;29:339–48.

    Article  CAS  PubMed  Google Scholar 

  23. Coughlin SR. Thrombin signalling and protease-activated receptors. Nature. 2000;407:258–64.

    Article  CAS  PubMed  Google Scholar 

  24. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991;64:1057–68.

    Article  CAS  PubMed  Google Scholar 

  25. Sambrano GR, Weiss EJ, Zheng YW, Huang W, Coughlin SR. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature. 2001;413:74–8.

    Article  CAS  PubMed  Google Scholar 

  26. Andersen H, Greenberg DL, Fujikawa K, Xu W, Chung DW, Davie EW. Protease-activated receptor 1 is the primary mediator of thrombin-stimulated platelet procoagulant activity. Proc Natl Acad Sci USA. 1999;96:11189–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shah R. Protease-activated receptors in cardiovascular health and diseases. Am Heart J. 2009;157:253–62.

    Article  CAS  PubMed  Google Scholar 

  28. Kahn ML, Zheng YW, Huang W, et al. A dual thrombin receptor system for platelet activation. Nature. 1998;394:690–4.

    Article  CAS  PubMed  Google Scholar 

  29. The Task Force for the Diagnosis and Management, Konstantinides SV, Torbicki A, et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism: The Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC) Endorsed by the European Respiratory Society (ERS). Eur Heart J. 2014;35(43):3033–69.

    Article  CAS  Google Scholar 

  30. Becattini C, Agnelli G, Schenone A, et al. Aspirin for preventing the recurrence of venous thromboembolism. N Engl J Med. 2012;366:1959–67.

    Article  CAS  PubMed  Google Scholar 

  31. Brighton TA, Eikelboom JW, Mann K, et al. Low-dose aspirin for preventing recurrent venous thromboembolism. N Engl J Med. 2012;367:1979–87.

    Article  CAS  PubMed  Google Scholar 

  32. von Bruhl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209:819–35.

    Article  CAS  Google Scholar 

  33. Brill A, Fuchs TA, Chauhan AK, et al. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood. 2011;117:1400–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clemetson KJ. Platelets and primary haemostasis. Thromb Res. 2012;129:220–4.

    Article  CAS  PubMed  Google Scholar 

  35. Guenther F, Herr N, Mauler M, et al. Contrast ultrasound for the quantification of deep vein thrombosis in living mice: effects of enoxaparin and P2Y12 receptor inhibition. J Thromb Haemost. 2013;11:1154–62.

    Article  CAS  PubMed  Google Scholar 

  36. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13:34–45.

    Article  CAS  PubMed  Google Scholar 

  37. Denis MM, Tolley ND, Bunting M, et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell. 2005;122:379–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev. 2007;21:99–111.

    Article  CAS  PubMed  Google Scholar 

  39. Riegger J, Byrne RA, Joner M, et al. Histopathological evaluation of thrombus in patients presenting with stent thrombosis. A multicenter European study: a report of the prevention of late stent thrombosis by an interdisciplinary global European effort consortiumdagger. Eur Heart J. 2016 May 14;37(19):1538–49.

    Article  PubMed  Google Scholar 

  40. Silvain J, Collet JP, Nagaswami C, et al. Composition of coronary thrombus in acute myocardial infarction. J Am Coll Cardiol. 2011;57:1359–67.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jenne CN, Urrutia R, Kubes P. Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol. 2013;35:254–61.

    Article  CAS  PubMed  Google Scholar 

  42. Rondina MT, Weyrich AS, Zimmerman GA. Platelets as cellular effectors of inflammation in vascular diseases. Circ Res. 2013;112:1506–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gawaz M, Fateh-Moghadam S, Pilz G, Gurland HJ, Werdan K. Platelet activation and interaction with leucocytes in patients with sepsis or multiple organ failure. Eur J Clin Investig. 1995;25:843–51.

    Article  CAS  Google Scholar 

  44. Brandt E, Petersen F, Ludwig A, Ehlert JE, Bock L, Flad HD. The beta-thromboglobulins and platelet factor 4: blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation. J Leukoc Biol. 2000;67:471–8.

    Article  CAS  PubMed  Google Scholar 

  45. Hartwig H, Drechsler M, Lievens D, et al. Platelet-derived PF4 reduces neutrophil apoptosis following arterial occlusion. Thromb Haemost. 2013;111:562–4.

    PubMed  Google Scholar 

  46. Gleissner CA, von Hundelshausen P, Ley K. Platelet chemokines in vascular disease. Arterioscler Thromb Vasc Biol. 2008;28:1920–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Verheul HM, Lolkema MP, Qian DZ, et al. Platelets take up the monoclonal antibody bevacizumab. Clin Cancer Res. 2007;13:5341–7.

    Article  CAS  PubMed  Google Scholar 

  48. de Jong JS, Dekker LR. Platelets and cardiac arrhythmia. Front Physiol. 2010;1:166.

    PubMed  PubMed Central  Google Scholar 

  49. Mannaioni PF, Di Bello MG, Raspanti S, et al. Storage and release of histamine in human platelets. Inflamm Res. 1995;44(Suppl 1):S16–7.

    Article  CAS  PubMed  Google Scholar 

  50. Duerschmied D, Suidan GL, Demers M, et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood. 2013;121:1008–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kenis G, Maes M. Effects of antidepressants on the production of cytokines. Int J Neuropsychopharmacol. 2002;5:401–12.

    Article  CAS  PubMed  Google Scholar 

  52. Durk T, Duerschmied D, Muller T, et al. Production of serotonin by tryptophan hydroxylase 1 and release via platelets contribute to allergic airway inflammation. Am J Respir Crit Care Med. 2013;187:476–85.

    Article  PubMed  CAS  Google Scholar 

  53. Durk T, Panther E, Muller T, et al. 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol. 2005;17:599–606.

    Article  PubMed  CAS  Google Scholar 

  54. Walther DJ, Peter J-U, Bashammakh S, et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science. 2003;299:76.

    Article  CAS  PubMed  Google Scholar 

  55. Iken K, Chheng S, Fargin A, Goulet AC, Kouassi E. Serotonin upregulates mitogen-stimulated B lymphocyte proliferation through 5-HT1A receptors. Cell Immunol. 1995;163:1–9.

    Article  CAS  PubMed  Google Scholar 

  56. Ito T, Ikeda U, Shimpo M, Yamamoto K, Shimada K. Serotonin increases interleukin-6 synthesis in human vascular smooth muscle cells. Circulation. 2000;102:2522–7.

    Article  CAS  PubMed  Google Scholar 

  57. Yu B, Becnel J, Zerfaoui M, Rohatgi R, Boulares AH, Nichols CD. Serotonin 5-hydroxytryptamine(2A) receptor activation suppresses tumor necrosis factor-alpha-induced inflammation with extraordinary potency. J Pharmacol Exp Ther. 2008;327:316–23.

    Article  CAS  PubMed  Google Scholar 

  58. Muller T, Durk T, Blumenthal B, et al. 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS One. 2009;4:e6453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Walther A, Petri E, Peter C, Czabanka M, Martin E. Selective serotonin-receptor antagonism and microcirculatory alterations during experimental endotoxemia. J Surg Res. 2007;143:216–23.

    Article  CAS  PubMed  Google Scholar 

  60. Schuff-Werner P, Splettstoesser W. Antioxidative properties of serotonin and the bactericidal function of polymorphonuclear phagocytes. Adv Exp Med Biol. 1999;467:321–5.

    Article  CAS  PubMed  Google Scholar 

  61. Ciz M, Komrskova D, Pracharova L, et al. Serotonin modulates the oxidative burst of human phagocytes via various mechanisms. Platelets. 2007;18:583–90.

    Article  CAS  PubMed  Google Scholar 

  62. Pracharova L, Okenkova K, Lojek A, Ciz M. Serotonin and its 5-HT(2) receptor agonist DOI hydrochloride inhibit the oxidative burst in total leukocytes but not in isolated neutrophils. Life Sci. 2010;86:518–23.

    Article  CAS  PubMed  Google Scholar 

  63. Bondesson L, Nordlind K, Liden S, Sundstrom E. Inhibiting effects of serotonin and serotonin antagonists on the migration of mononuclear leucocytes. Immunopharmacol Immunotoxicol. 1993;15:243–50.

    Article  CAS  PubMed  Google Scholar 

  64. Northover BJ. The effect of histamine and 5-hydroxytryptamine on phagocytosis of staphylococci in vitro by polymorphs and macrophages. J Pathol Bacteriol. 1961;82:355–61.

    Article  CAS  PubMed  Google Scholar 

  65. Nordlind K, Sundstrom E, Bondesson L. Inhibiting effects of serotonin antagonists on the proliferation of mercuric chloride stimulated human peripheral blood T lymphocytes. Int Arch Allergy Immunol. 1992;97:105–8.

    Article  CAS  PubMed  Google Scholar 

  66. Sternberg EM, Trial J, Parker CW. Effect of serotonin on murine macrophages: suppression of Ia expression by serotonin and its reversal by 5-HT2 serotonergic receptor antagonists. J Immunol. 1986;137:276–82.

    CAS  PubMed  Google Scholar 

  67. Hellstrand K, Czerkinsky C, Ricksten A, et al. Role of serotonin in the regulation of interferon-gamma production by human natural killer cells. J Interf Res. 1993;13:33–8.

    Article  CAS  Google Scholar 

  68. Young MR, Matthews JP. Serotonin regulation of T-cell subpopulations and of macrophage accessory function. Immunology. 1995;84:148–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kut JL, Young MR, Crayton JW, Wright MA, Young ME. Regulation of murine T-lymphocyte function by spleen cell-derived and exogenous serotonin. Immunopharmacol Immunotoxicol. 1992;14:783–96.

    Article  CAS  PubMed  Google Scholar 

  70. Arzt E, Costas M, Finkielman S, Nahmod VE. Serotonin inhibition of tumor necrosis factor-alpha synthesis by human monocytes. Life Sci. 1991;48:2557–62.

    Article  CAS  PubMed  Google Scholar 

  71. Cloez-Tayarani I, Petit-Bertron AF, Venters HD, Cavaillon JM. Differential effect of serotonin on cytokine production in lipopolysaccharide-stimulated human peripheral blood mononuclear cells: involvement of 5-hydroxytryptamine2A receptors. Int Immunol. 2003;15:233–40.

    Article  CAS  PubMed  Google Scholar 

  72. Kubera M, Maes M, Kenis G, Kim YK, Lason W. Effects of serotonin and serotonergic agonists and antagonists on the production of tumor necrosis factor alpha and interleukin-6. Psychiatry Res. 2005;134:251–8.

    Article  CAS  PubMed  Google Scholar 

  73. Cloutier N, Pare A, Farndale RW, et al. Platelets can enhance vascular permeability. Blood. 2012;120:1334–43.

    Article  CAS  PubMed  Google Scholar 

  74. Rendu F, Brohard-Bohn B. The platelet release reaction: granules’ constituents, secretion and functions. Platelets. 2001;12:261–73.

    Article  CAS  PubMed  Google Scholar 

  75. Kraemer BF, Campbell RA, Schwertz H, et al. Novel anti-bacterial activities of beta-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog. 2011;7:e1002355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tohidnezhad M, Varoga D, Wruck CJ, et al. Platelets display potent antimicrobial activity and release human beta-defensin 2. Platelets. 2012;23:217–23.

    Article  CAS  PubMed  Google Scholar 

  77. Tohidnezhad M, Varoga D, Podschun R, et al. Thrombocytes are effectors of the innate immune system releasing human beta defensin-3. Injury. 2011;42:682–6.

    Article  PubMed  Google Scholar 

  78. Kasirer-Friede A, Kahn ML, Shattil SJ. Platelet integrins and immunoreceptors. Immunol Rev. 2007;218:247–64.

    Article  CAS  PubMed  Google Scholar 

  79. Semple JW, Italiano JE Jr, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11:264–74.

    Article  CAS  PubMed  Google Scholar 

  80. Peerschke EI, Yin W, Ghebrehiwet B. Platelet mediated complement activation. Adv Exp Med Biol. 2008;632:81–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hasegawa S, Tashiro N, Matsubara T, Furukawa S, Ra C. A comparison of FcepsilonRI-mediated RANTES release from human platelets between allergic patients and healthy individuals. Int Arch Allergy Immunol. 2001;125(Suppl 1):42–7.

    Article  CAS  PubMed  Google Scholar 

  82. Ginsberg MH, Henson PM. Enhancement of platelet response to immune complexes and IgG aggregates by lipid A-rich bacterial lipopolysaccharides. J Exp Med. 1978;147:207–17.

    Article  CAS  PubMed  Google Scholar 

  83. Lister KJ, James WG, Hickey MJ. Immune complexes mediate rapid alterations in microvascular permeability: roles for neutrophils, complement, and platelets. Microcirculation. 2007;14:709–22.

    Article  CAS  PubMed  Google Scholar 

  84. Puram V, Giuliani D, Morse BS. Circulating immune complexes and platelet IgG in various diseases. Clin Exp Immunol. 1984;58:672–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Boulaftali Y, Hess PR, Getz TM, et al. Platelet ITAM signaling is critical for vascular integrity in inflammation. J Clin Invest. 2013;123:908–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Suzuki-Inoue K. Essential in vivo roles of the platelet activation receptor CLEC-2 in tumour metastasis, lymphangiogenesis and thrombus formation. J Biochem. 2011;150:127–32.

    Article  CAS  PubMed  Google Scholar 

  87. Aukrust P, Muller F, Ueland T, et al. Enhanced levels of soluble and membrane-bound CD40 ligand in patients with unstable angina. Possible reflection of T lymphocyte and platelet involvement in the pathogenesis of acute coronary syndromes. Circulation. 1999;100:614–20.

    Article  CAS  PubMed  Google Scholar 

  88. Elzey BD, Ratliff TL, Sowa JM, Crist SA. Platelet CD40L at the interface of adaptive immunity. Thromb Res. 2011;127:180–3.

    Article  CAS  PubMed  Google Scholar 

  89. Ferroni P, Santilli F, Guadagni F, Basili S, Davi G. Contribution of platelet-derived CD40 ligand to inflammation, thrombosis and neoangiogenesis. Curr Med Chem. 2007;14:2170–80.

    Article  CAS  PubMed  Google Scholar 

  90. Gerdes N, Zirlik A. Co-stimulatory molecules in and beyond co-stimulation – tipping the balance in atherosclerosis? Thromb Haemost. 2011;106:804–13.

    Article  CAS  PubMed  Google Scholar 

  91. Lapchak PH, Ioannou A, Kannan L, Rani P, Dalle Lucca JJ, Tsokos GC. Platelet-associated CD40/CD154 mediates remote tissue damage after mesenteric ischemia/reperfusion injury. PLoS One. 2012;7:e32260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lievens D, Eijgelaar WJ, Biessen EA, Daemen MJ, Lutgens E. The multi-functionality of CD40L and its receptor CD40 in atherosclerosis. Thromb Haemost. 2009;102:206–14.

    Article  CAS  PubMed  Google Scholar 

  93. Lievens D, Zernecke A, Seijkens T, et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood. 2010;116:4317–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lutgens E, Lievens D, Beckers L, et al. Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med. 2010;207:391–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost. 2011;105(Suppl 1):S13–33.

    CAS  PubMed  Google Scholar 

  96. Wolf D, Hohmann JD, Wiedemann A, et al. Binding of CD40L to Mac-1’s I-domain involves the EQLKKSKTL motif and mediates leukocyte recruitment and atherosclerosis—but does not affect immunity and thrombosis in mice. Circ Res. 2011;109:1269–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zirlik A, Bavendiek U, Libby P, et al. TRAF-1, -2, -3, -5, and -6 are induced in atherosclerotic plaques and differentially mediate proinflammatory functions of CD40L in endothelial cells. Arterioscler Thromb Vasc Biol. 2007;27:1101–7.

    Article  CAS  PubMed  Google Scholar 

  98. Lutgens E, Poggi M, Weber C. CD40L-CD40 fuel ignites obesity. Thromb Haemost. 2010;103:694–5.

    Article  CAS  PubMed  Google Scholar 

  99. Antczak AJ, Singh N, Gay SR, Worth RG. IgG-complex stimulated platelets: a source of sCD40L and RANTES in initiation of inflammatory cascade. Cell Immunol. 2010;263:129–33.

    Article  CAS  PubMed  Google Scholar 

  100. Henn V, Slupsky JR, Grafe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998;391:591–4.

    Article  CAS  PubMed  Google Scholar 

  101. Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P. Platelets express functional Toll-like receptor-4. Blood. 2005;106:2417–23.

    Article  CAS  PubMed  Google Scholar 

  102. Rex S, Beaulieu LM, Perlman DH, et al. Immune versus thrombotic stimulation of platelets differentially regulates signalling pathways, intracellular protein-protein interactions, and alpha-granule release. Thromb Haemost. 2009;102:97–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Blair P, Rex S, Vitseva O, et al. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res. 2009;104:346–54.

    Article  CAS  PubMed  Google Scholar 

  104. Beaulieu LM, Freedman JE. The role of inflammation in regulating platelet production and function: Toll-like receptors in platelets and megakaryocytes. Thromb Res. 2010;125:205–9.

    Article  CAS  PubMed  Google Scholar 

  105. Thon JN, Peters CG, Machlus KR, et al. T granules in human platelets function in TLR9 organization and signaling. J Cell Biol. 2012;198:561–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shiraki R, Inoue N, Kawasaki S, et al. Expression of Toll-like receptors on human platelets. Thromb Res. 2004;113:379–85.

    Article  CAS  PubMed  Google Scholar 

  107. Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O. Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol. 2005;83:196–8.

    Article  CAS  PubMed  Google Scholar 

  108. Aslam R, Speck ER, Kim M, et al. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood. 2006;107:637–41.

    Article  CAS  PubMed  Google Scholar 

  109. Berthet J, Damien P, Hamzeh-Cognasse H, et al. Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin Immunol. 2012;145:189–200.

    Article  CAS  PubMed  Google Scholar 

  110. Zhang G, Han J, Welch EJ, et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol. 2009;182:7997–8004.

    Article  CAS  PubMed  Google Scholar 

  111. Falker K, Klarstrom-Engstrom K, Bengtsson T, Lindahl TL, Grenegard M. The toll-like receptor 2/1 (TLR2/1) complex initiates human platelet activation via the src/Syk/LAT/PLCgamma2 signalling cascade. Cell Signal. 2014;26:279–86.

    Article  PubMed  CAS  Google Scholar 

  112. Rivadeneyra L, Carestia A, Etulain J, et al. Regulation of platelet responses triggered by Toll-like receptor 2 and 4 ligands is another non-genomic role of nuclear factor-kappaB. Thromb Res. 2014;133:235–43.

    Article  CAS  PubMed  Google Scholar 

  113. Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13:463–9.

    Article  CAS  PubMed  Google Scholar 

  114. Koupenova M, Vitseva O, Mackay CR, et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood. 2014;124(5):791–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Panigrahi S, Ma Y, Hong L, et al. Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis. Circ Res. 2013;112:103–12.

    Article  CAS  PubMed  Google Scholar 

  116. Koulis C, Chen YC, Hausding C, et al. Protective role for Toll-like receptor-9 in the development of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2014;34(3):516–25.

    Article  CAS  PubMed  Google Scholar 

  117. Li Y, Brazzell J, Herrera A, Walcheck B. ADAM17 deficiency by mature neutrophils has differential effects on L-selectin shedding. Blood. 2006;108:2275–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Black RA, Rauch CT, Kozlosky CJ, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997;385:729–33.

    Article  CAS  PubMed  Google Scholar 

  119. Canault M, Leroyer AS, Peiretti F, et al. Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1. Am J Pathol. 2007;171:1713–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Canault M, Peiretti F, Kopp F, et al. The TNF alpha converting enzyme (TACE/ADAM17) is expressed in the atherosclerotic lesions of apolipoprotein E-deficient mice: possible contribution to elevated plasma levels of soluble TNF alpha receptors. Atherosclerosis. 2006;187:82–91.

    Article  CAS  PubMed  Google Scholar 

  121. Duerschmied D, Canault M, Lievens D, et al. Serotonin stimulates platelet receptor shedding by tumor necrosis factor-alpha-converting enzyme (ADAM17). J Thromb Haemost. 2009;7:1163–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bergmeier W, Piffath CL, Cheng G, et al. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates GPIbalpha shedding from platelets in vitro and in vivo. Circ Res. 2004;95:677–83.

    Article  CAS  PubMed  Google Scholar 

  123. Peschon JJ, Slack JL, Reddy P, et al. An essential role for ectodomain shedding in mammalian development. Science. 1998;282:1281–4.

    Article  CAS  PubMed  Google Scholar 

  124. Brill A, Chauhan AK, Canault M, Walsh MT, Bergmeier W, Wagner DD. Oxidative stress activates ADAM17/TACE and induces its target receptor shedding in platelets in a p38-dependent fashion. Cardiovasc Res. 2009;84:137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hui P, Cook DJ, Lim W, Fraser GA, Arnold DM. The frequency and clinical significance of thrombocytopenia complicating critical illness: a systematic review. Chest. 2011;139:271–8.

    Article  PubMed  Google Scholar 

  126. Forehand CC, Cribb J, May JR. Examination of the relationship between antimicrobials and thrombocytosis. Ann Pharmacother. 2012;46:1425–9.

    Article  PubMed  Google Scholar 

  127. McMorran BJ, Marshall VM, de Graaf C, et al. Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science. 2009;323:797–800.

    Article  CAS  PubMed  Google Scholar 

  128. Wong CH, Jenne CN, Petri B, Chrobok NL, Kubes P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat Immunol. 2013;14:785–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Manne RK, Natarajan K, Patil R, Prathi VS, Beeraka SS, Kolaparthi VS. Glanzmann thrombasthenia associated with human immunodeficiency virus-positive patient. Int J Prev Med. 2014;5:500–4.

    PubMed  PubMed Central  Google Scholar 

  130. Russwurm S, Vickers J, Meier-Hellmann A, et al. Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock. 2002;17:263–8.

    Article  PubMed  Google Scholar 

  131. Yaguchi A, Lobo FL, Vincent JL, Pradier O. Platelet function in sepsis. J Thromb Haemost. 2004;2:2096–102.

    Article  CAS  PubMed  Google Scholar 

  132. Rondina MT, Schwertz H, Harris ES, et al. The septic milieu triggers expression of spliced tissue factor mRNA in human platelets. J Thromb Haemost. 2011;9:748–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Grabarek J, Timmons S, Hawiger J. Modulation of human platelet protein kinase C by endotoxic lipid A. J Clin Invest. 1988;82:964–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gresele P, Dottorini M, Selli ML, et al. Altered platelet function associated with the bronchial hyperresponsiveness accompanying nocturnal asthma. J Allergy Clin Immunol. 1993;91:894–902.

    Article  CAS  PubMed  Google Scholar 

  135. Kowal K, Pampuch A, Kowal-Bielecka O, DuBuske LM, Bodzenta-Lukaszyk A. Platelet activation in allergic asthma patients during allergen challenge with Dermatophagoides pteronyssinus. Clin Exp Allergy. 2006;36:426–32.

    Article  CAS  PubMed  Google Scholar 

  136. Johansson MW, Han ST, Gunderson KA, Busse WW, Jarjour NN, Mosher DF. Platelet activation, P-selectin, and eosinophil beta1-integrin activation in asthma. Am J Respir Crit Care Med. 2012;185:498–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pitchford SC, Momi S, Baglioni S, et al. Allergen induces the migration of platelets to lung tissue in allergic asthma. Am J Respir Crit Care Med. 2008;177:604–12.

    Article  CAS  PubMed  Google Scholar 

  138. Pitchford SC, Yano H, Lever R, et al. Platelets are essential for leukocyte recruitment in allergic inflammation. J Allergy Clin Immunol. 2003;112:109–18.

    Article  CAS  PubMed  Google Scholar 

  139. Idzko M, Hammad H, van Nimwegen M, et al. Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med. 2007;13:913–9.

    Article  CAS  PubMed  Google Scholar 

  140. Kohler D, Straub A, Weissmuller T, et al. Phosphorylation of vasodilator-stimulated phosphoprotein prevents platelet-neutrophil complex formation and dampens myocardial ischemia-reperfusion injury. Circulation. 2011;123:2579–90.

    Article  PubMed  CAS  Google Scholar 

  141. Wang K, Zhou X, Huang Y, et al. Adjunctive treatment with ticagrelor, but not clopidogrel, added to tPA enables sustained coronary artery recanalisation with recovery of myocardium perfusion in a canine coronary thrombosis model. Thromb Haemost. 2010;104:609–17.

    Article  CAS  PubMed  Google Scholar 

  142. de Groot H, Rauen U. Ischemia-reperfusion injury: processes in pathogenetic networks: a review. Transplant Proc. 2007;39:481–4.

    Article  PubMed  CAS  Google Scholar 

  143. Pak S, Kondo T, Nakano Y, et al. Platelet adhesion in the sinusoid caused hepatic injury by neutrophils after hepatic ischemia reperfusion. Platelets. 2010;21:282–8.

    Article  CAS  PubMed  Google Scholar 

  144. Lesurtel M, Graf R, Aleil B, et al. Platelet-derived serotonin mediates liver regeneration. Science. 2006;312:104–7.

    Article  CAS  PubMed  Google Scholar 

  145. McManus DD, Beaulieu LM, Mick E, et al. Relationship among circulating inflammatory proteins, platelet gene expression, and cardiovascular risk. Arterioscler Thromb Vasc Biol. 2013;33:2666–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Freedman JE, Larson MG, Tanriverdi K, et al. Relation of platelet and leukocyte inflammatory transcripts to body mass index in the Framingham heart study. Circulation. 2010;122:119–29.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Wolf D, Jehle F, Anto Michel N, et al. Co-inhibitory suppression of T cell activation by CD40 protects from obesity and adipose tissue inflammation in mice. Circulation. 2014;129(23):2414–25.

    Article  CAS  PubMed  Google Scholar 

  148. Lievens D, von Hundelshausen P. Platelets in atherosclerosis. Thromb Haemost. 2011;106:827–38.

    Article  CAS  PubMed  Google Scholar 

  149. Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest. 2005;115:3378–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Koenen RR, von Hundelshausen P, Nesmelova IV, et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med. 2009;15:97–103.

    Article  CAS  PubMed  Google Scholar 

  151. von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res. 2007;100:27–40.

    Article  CAS  Google Scholar 

  152. Wagner DD, Frenette PS. The vessel wall and its interactions. Blood. 2008;111:5271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Moore KL, Stults NL, Diaz S, et al. Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J Cell Biol. 1992;118:445–56.

    Article  CAS  PubMed  Google Scholar 

  154. Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ Res. 2007;100:1673–85.

    Article  CAS  PubMed  Google Scholar 

  155. Coller BS, Peerschke EI, Scudder LE, Sullivan CA. A murine monoclonal antibody that completely blocks the binding of fibrinogen to platelets produces a thrombasthenic-like state in normal platelets and binds to glycoproteins IIb and/or IIIa. J Clin Invest. 1983;72:325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell. 1998;94:657–66.

    Article  CAS  PubMed  Google Scholar 

  157. Ginsberg MH, Forsyth J, Lightsey A, Chediak J, Plow EF. Reduced surface expression and binding of fibronectin by thrombin-stimulated thrombasthenic platelets. J Clin Invest. 1983;71:619–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Asch E, Podack E. Vitronectin binds to activated human platelets and plays a role in platelet aggregation. J Clin Invest. 1990;85:1372–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wencel-Drake JD, Painter RG, Zimmerman TS, Ginsberg MH. Ultrastructural localization of human platelet thrombospondin, fibrinogen, fibronectin, and von Willebrand factor in frozen thin section. Blood. 1985;65:929–38.

    Article  CAS  PubMed  Google Scholar 

  160. Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol. 2008;28:403–12.

    Article  CAS  PubMed  Google Scholar 

  161. Newman PJ, Newman DK. Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol. 2003;23:953–64.

    Article  CAS  PubMed  Google Scholar 

  162. Hayward CP, Furmaniak-Kazmierczak E, Cieutat AM, et al. Factor V is complexed with multimerin in resting platelet lysates and colocalizes with multimerin in platelet alpha-granules. J Biol Chem. 1995;270:19217–24.

    Article  CAS  PubMed  Google Scholar 

  163. Schwarz HP, Heeb MJ, Wencel-Drake JD, Griffin JH. Identification and quantitation of protein S in human platelets. Blood. 1985;66:1452–5.

    Article  CAS  PubMed  Google Scholar 

  164. Hu CJ, Baglia FA, Mills DC, Konkle BA, Walsh PN. Tissue-specific expression of functional platelet factor XI is independent of plasma factor XI expression. Blood. 1998;91:3800–7.

    Article  CAS  PubMed  Google Scholar 

  165. Marx G, Korner G, Mou X, Gorodetsky R. Packaging zinc, fibrinogen, and factor XIII in platelet alpha-granules. J Cell Physiol. 1993;156:437–42.

    Article  CAS  PubMed  Google Scholar 

  166. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16:585–601.

    Article  PubMed  Google Scholar 

  167. Linder BL, Chernoff A, Kaplan KL, Goodman DS. Release of platelet-derived growth factor from human platelets by arachidonic acid. Proc Natl Acad Sci USA. 1979;76:4107–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lo Re S, Lecocq M, Uwambayinema F, et al. Platelet-derived growth factor-producing CD4+ Foxp3+ regulatory T lymphocytes promote lung fibrosis. Am J Respir Crit Care Med. 2011;184:1270–81.

    Article  CAS  PubMed  Google Scholar 

  169. Fava RA, Casey TT, Wilcox J, Pelton RW, Moses HL, Nanney LB. Synthesis of transforming growth factor-beta 1 by megakaryocytes and its localization to megakaryocyte and platelet alpha-granules. Blood. 1990;76:1946–55.

    Article  CAS  PubMed  Google Scholar 

  170. Pinzani M, Gesualdo L, Sabbah GM, Abboud HE. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J Clin Invest. 1989;84:1786–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Salgado R, Benoy I, Bogers J, et al. Platelets and vascular endothelial growth factor (VEGF): a morphological and functional study. Angiogenesis. 2001;4:37–43.

    Article  CAS  PubMed  Google Scholar 

  172. Schmaier AH, Amenta S, Xiong T, Heda GD, Gewirtz AM. Expression of platelet C1 inhibitor. Blood. 1993;82:465–74.

    Article  CAS  PubMed  Google Scholar 

  173. Shieh BH, Travis J. The reactive site of human alpha 2-antiplasmin. J Biol Chem. 1987;262:6055–9.

    Article  CAS  PubMed  Google Scholar 

  174. Nylander M, Osman A, Ramstrom S, Aklint E, Larsson A, Lindahl TL. The role of thrombin receptors PAR1 and PAR4 for PAI-1 storage, synthesis and secretion by human platelets. Thromb Res. 2012;129:e51–8.

    Article  CAS  PubMed  Google Scholar 

  175. Brogren H, Karlsson L, Andersson M, Wang L, Erlinge D, Jern S. Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood. 2004;104:3943–8.

    Article  CAS  PubMed  Google Scholar 

  176. Kwakman PH, Krijgsveld J, de Boer L, et al. Native thrombocidin-1 and unfolded thrombocidin-1 exert antimicrobial activity via distinct structural elements. J Biol Chem. 2011;286:43506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. George JN, Saucerman S, Levine SP, Knieriem LK, Bainton DF. Immunoglobulin G is a platelet alpha granule-secreted protein. J Clin Invest. 1985;76:2020–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. George JN. Platelet IgG: measurement, interpretation, and clinical significance. Prog Hemost Thromb. 1991;10:97–126.

    CAS  PubMed  Google Scholar 

  179. Falet H, Marchetti MP, Hoffmeister KM, Massaad MJ, Geha RS, Hartwig JH. Platelet-associated IgAs and impaired GPVI responses in platelets lacking WIP. Blood. 2009;114:4729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. George JN, Saucerman S. Platelet IgG, IgA, IgM, and albumin: correlation of platelet and plasma concentrations in normal subjects and in patients with ITP or dysproteinemia. Blood. 1988;72:362–5.

    Article  CAS  PubMed  Google Scholar 

  181. Berditchevski F, Bazzoni G, Hemler ME. Specific association of CD63 with the VLA-3 and VLA-6 integrins. J Biol Chem. 1995;270:17784–90.

    Article  CAS  PubMed  Google Scholar 

  182. Damas C, Vink T, Nieuwenhuis HK, Sixma JJ. The 33-kDa platelet alpha-granule membrane protein (GMP-33) is an N-terminal proteolytic fragment of thrombospondin. Thromb Haemost. 2001;86:887–93.

    Article  CAS  PubMed  Google Scholar 

  183. Gear AR, Camerini D. Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Microcirculation. 2003;10:335–50.

    Article  CAS  PubMed  Google Scholar 

  184. Al-Bannawi A, Al-Wesebai K, Taha S, Bakhiet M. Chlamydia pneumoniae induces chemokine expression by platelets in patients with atherosclerosis. Med Princ Pract. 2011;20:438–43.

    Article  PubMed  Google Scholar 

  185. von Hundelshausen P, Weber KS, Huo Y, et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation. 2001;103:1772–7.

    Article  Google Scholar 

  186. Smith DF, Galkina E, Ley K, Huo Y. GRO family chemokines are specialized for monocyte arrest from flow. Am J Physiol Heart Circ Physiol. 2005;289:H1976–84.

    Article  CAS  PubMed  Google Scholar 

  187. Scheuerer B, Ernst M, Durrbaum-Landmann I, et al. The CXC-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages. Blood. 2000;95:1158–66.

    Article  CAS  PubMed  Google Scholar 

  188. von Hundelshausen P, Koenen RR, Sack M, et al. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood. 2005;105:924–30.

    Article  CAS  Google Scholar 

  189. Struyf S, Burdick MD, Proost P, Van Damme J, Strieter RM. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis. Circ Res. 2004;95:855–7.

    Article  CAS  PubMed  Google Scholar 

  190. Fleischer J, Grage-Griebenow E, Kasper B, et al. Platelet factor 4 inhibits proliferation and cytokine release of activated human T cells. J Immunol. 2002;169:770–7.

    Article  CAS  PubMed  Google Scholar 

  191. Mei J, Liu Y, Dai N, et al. CXCL5 regulates chemokine scavenging and pulmonary host defense to bacterial infection. Immunity. 2010;33:106–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Power CA, Furness RB, Brawand C, Wells TN. Cloning of a full-length cDNA encoding the neutrophil-activating peptide ENA-78 from human platelets. Gene. 1994;151:333–4.

    Article  CAS  PubMed  Google Scholar 

  193. Hristov M, Zernecke A, Bidzhekov K, et al. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res. 2007;100:590–7.

    Article  CAS  PubMed  Google Scholar 

  194. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. King SM, McNamee RA, Houng AK, Patel R, Brands M, Reed GL. Platelet dense-granule secretion plays a critical role in thrombosis and subsequent vascular remodeling in atherosclerotic mice. Circulation. 2009;120:785–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Evangelista V, Manarini S, Rotondo S, et al. Platelet/polymorphonuclear leukocyte interaction in dynamic conditions: evidence of adhesion cascade and cross talk between P-selectin and the beta 2 integrin CD11b/CD18. Blood. 1996;88:4183–94.

    Article  CAS  PubMed  Google Scholar 

  197. Frelinger AL 3rd, Jakubowski JA, Li Y, et al. The active metabolite of prasugrel inhibits ADP-stimulated thrombo-inflammatory markers of platelet activation: Influence of other blood cells, calcium, and aspirin. Thromb Haemost. 2007;98:192–200.

    Article  CAS  PubMed  Google Scholar 

  198. Weissmann G. The role of lysosomes in inflammation and disease. Annu Rev Med. 1967;18:97–112.

    Article  CAS  PubMed  Google Scholar 

  199. Sixma JJ, van den Berg A, Hasilik A, von Figura K, Geuze HJ. Immuno-electron microscopical demonstration of lysosomes in human blood platelets and megakaryocytes using anti-cathepsin D. Blood. 1985;65:1287–91.

    Article  CAS  PubMed  Google Scholar 

  200. Radzun HJ, Parwaresch MR, Kulenkampff C, Stein H. Lysosomal acid phosphatase: activity and isoenzymes in separated normal human blood cells. Clin Chim Acta. 1980;102:227–35.

    Article  CAS  PubMed  Google Scholar 

  201. Chesney CM, Harper E, Colman RW. Human platelet collagenase. J Clin Invest. 1974;53:1647–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Chappell D, Jacob M, Rehm M, et al. Heparinase selectively sheds heparan sulphate from the endothelial glycocalyx. Biol Chem. 2008;389:79–82.

    Article  CAS  PubMed  Google Scholar 

  203. Dangelmaier CA, Holmsen H. Determination of acid hydrolases in human platelets. Anal Biochem. 1980;104:182–91.

    Article  CAS  PubMed  Google Scholar 

  204. Beaulieu LM, Lin E, Mick E, et al. Interleukin 1 receptor 1 and interleukin 1beta regulate megakaryocyte maturation, platelet activation, and transcript profile during inflammation in mice and humans. Arterioscler Thromb Vasc Biol. 2014;34(3):552–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Maugeri N, Franchini S, Campana L, et al. Circulating platelets as a source of the damage-associated molecular pattern HMGB1 in patients with systemic sclerosis. Autoimmunity. 2012;45:584–7.

    Article  CAS  PubMed  Google Scholar 

  206. Rouhiainen A, Imai S, Rauvala H, Parkkinen J. Occurrence of amphoterin (HMG1) as an endogenous protein of human platelets that is exported to the cell surface upon platelet activation. Thromb Haemost. 2000;84:1087–94.

    Article  CAS  PubMed  Google Scholar 

  207. Prancan A, Simon D, Pope L. Platelet thromboxane production during endotoxin shock. Agents Actions. 1981;11:648–50.

    Article  CAS  PubMed  Google Scholar 

  208. Edwards LJ, Constantinescu CS. Platelet activating factor/platelet activating factor receptor pathway as a potential therapeutic target in autoimmune diseases. Inflamm Allergy Drug Targets. 2009;8:182–90.

    Article  CAS  PubMed  Google Scholar 

  209. Leveille C, Bouillon M, Guo W, et al. CD40 ligand binds to alpha5beta1 integrin and triggers cell signaling. J Biol Chem. 2007;282:5143–51.

    Article  CAS  PubMed  Google Scholar 

  210. Schaff M, Tang C, Maurer E, et al. Integrin alpha6beta1 is the main receptor for vascular laminins and plays a role in platelet adhesion, activation, and arterial thrombosis. Circulation. 2013;128:541–52.

    Article  CAS  PubMed  Google Scholar 

  211. Bix G, Iozzo RA, Woodall B, et al. Endorepellin, the C-terminal angiostatic module of perlecan, enhances collagen-platelet responses via the alpha2beta1-integrin receptor. Blood. 2007;109:3745–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Yin H, Stojanovic-Terpo A, Xu W, et al. Role for platelet glycoprotein Ib-IX and effects of its inhibition in endotoxemia-induced thrombosis, thrombocytopenia, and mortality. Arterioscler Thromb Vasc Biol. 2013;33:2529–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Verschoor A, Neuenhahn M, Navarini AA, et al. A platelet-mediated system for shuttling blood-borne bacteria to CD8alpha+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol. 2011;12:1194–201.

    Article  CAS  PubMed  Google Scholar 

  214. Diacovo TG, deFougerolles AR, Bainton DF, Springer TA. A functional integrin ligand on the surface of platelets: intercellular adhesion molecule-2. J Clin Invest. 1994;94:1243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Weber KS, Alon R, Klickstein LB. Sialylation of ICAM-2 on platelets impairs adhesion of leukocytes via LFA-1 and DC-SIGN. Inflammation. 2004;28:177–88.

    Article  CAS  PubMed  Google Scholar 

  216. Schulz C, Penz S, Hoffmann C, et al. Platelet GPVI binds to collagenous structures in the core region of human atheromatous plaque and is critical for atheroprogression in vivo. Basic Res Cardiol. 2008;103:356–67.

    Article  CAS  PubMed  Google Scholar 

  217. Haselmayer P, Grosse-Hovest L, von Landenberg P, Schild H, Radsak MP. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood. 2007;110:1029–35.

    Article  CAS  PubMed  Google Scholar 

  218. Derive M, Bouazza Y, Sennoun N, et al. Soluble TREM-like transcript-1 regulates leukocyte activation and controls microbial sepsis. J Immunol. 2012;188:5585–92.

    Article  CAS  PubMed  Google Scholar 

  219. Riaz AH, Tasma BE, Woodman ME, Wooten RM, Worth RG. Human platelets efficiently kill IgG-opsonized E coli. FEMS Immunol Med Microbiol. 2012;65:78–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Rogala B, Gumprecht J, Gawlik R, Strojek K. Platelet aggregation in IgE-mediated allergy with elevated soluble Fc epsilon RII/CD23 level. J Investig Allergol Clin Immunol. 1995;5:161–5.

    CAS  PubMed  Google Scholar 

  221. Qian K, Xie F, Gibson AW, Edberg JC, Kimberly RP, Wu J. Functional expression of IgA receptor FcalphaRI on human platelets. J Leukoc Biol. 2008;84:1492–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Peerschke EI, Reid KB, Ghebrehiwet B. Platelet activation by C1q results in the induction of alpha IIb/beta 3 integrins (GPIIb-IIIa) and the expression of P-selectin and procoagulant activity. J Exp Med. 1993;178:579–87.

    Article  CAS  PubMed  Google Scholar 

  223. Nguyen T, Ghebrehiwet B, Peerschke EI. Staphylococcus aureus protein A recognizes platelet gC1qR/p33: a novel mechanism for staphylococcal interactions with platelets. Infect Immun. 2000;68:2061–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ando B, Wiedmer T, Sims PJ. The secretory release reaction initiated by complement proteins C5b-9 occurs without platelet aggregation through glycoprotein IIb-IIIa. Blood. 1989;73:462–7.

    Article  CAS  PubMed  Google Scholar 

  225. Martel C, Cointe S, Maurice P, et al. Requirements for membrane attack complex formation and anaphylatoxins binding to collagen-activated platelets. PLoS One. 2011;6:e18812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Duerschmied MD .

Editor information

Editors and Affiliations

Compliance with Ethical Standards

Compliance with Ethical Standards

  • Conflict of Interest: Daniel Duerschmied and Steffen Massberg declare that they have no conflict of interest.

  • Ethical Approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duerschmied, D., Massberg, S. (2017). Platelets as Regulators of Thrombosis and Inflammation. In: Zirlik, A., Bode, C., Gawaz, M. (eds) Platelets, Haemostasis and Inflammation. Cardiac and Vascular Biology, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-66224-4_4

Download citation

Publish with us

Policies and ethics