Skip to main content

Cutaneous Reactions to Targeted Anticancer Agents

  • Chapter
  • First Online:
Skin Tumors and Reactions to Cancer Therapy in Children

Abstract

Given evidence of improved outcomes in adults, targeted anticancer therapy is increasingly being used in the pediatric population. Much remains to be learned about both the acute and long-term potential adverse effects of therapies targeting molecular pathways when administered in childhood. Cutaneous toxicities from conventional chemotherapy are well described and generally nonspecific, including alopecia, mucositis, acral erythema, and intertriginous reactions among others. Conversely, dermatologic adverse events to targeted therapies are due, at least in part, to the expression of target molecules in the skin. Targeted therapy subclasses exhibit specific cutaneous reaction patterns and thus knowledge of these drugs, their characteristic skin reactions, and management approaches is essential for early recognition and therapy. When managed effectively, patients can have improved quality of life and are better able to remain on their potentially lifesaving anticancer therapies (J Am Acad Dermatol 71:217e1–e11, 2014). In this chapter, cutaneous adverse effects of targeted anticancer therapies are discussed, with special consideration paid to pediatric specific challenges and focus on agents currently used or in active trials in the pediatric population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reyes-Habito CM, Roh EK. Cutaneous reactions to chemotherapeutic drugs and targeted therapies for cancer: Part II targeted therapies. J Am Acad Dermatol. 2014;71:217e1–e11.

    Article  Google Scholar 

  2. Gore L, DeGregori J, Porter CC. Targeting developmental pathways in children with cancer: what price success? Lancet Oncol. 2013;14:e70–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Belum VR, Washington C, Pratilas CA, et al. Dermatologic adverse events in pediatric patients receiving targeted anticancer therapies: a pooled analysis. Pediatr Blood Cancer. 2015;62:798–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perez-Soler R. Rash as a surrogate marker for efficacy of epidermal growth factor receptor inhibitors in lung cancer. Clin Lung Cancer. 2006;8:S7–S14.

    Article  CAS  PubMed  Google Scholar 

  5. Shima H, Tokuyama M, Tanizawa A, et al. Distinct impact of imatinib on growth at prepubertal and pubertal ages of children with chronic myeloid leukemia. J Pediatr. 2011;159:676–81.

    Article  CAS  PubMed  Google Scholar 

  6. Bansal D, Shava U, Varma N, et al. Imatinib has adverse effect on growth in children with chronic myeloid leukemia. Pediatr Blood Cancer. 2012;59:481–4.

    Article  PubMed  Google Scholar 

  7. Vandyke K, Dewar AL, Fitter S, et al. Imatinib mesylate causes growth plate closure in vivo. Leukemia. 2009;23:2155–9.

    Article  CAS  PubMed  Google Scholar 

  8. Seshadri T, Seymour JF, McArthur GA. Oligospermia in a patient receiving imatinib therapy for the hypereosinophilic syndrome. N Engl J Med. 2004;351:2134–5.

    Article  CAS  PubMed  Google Scholar 

  9. Mariani S, Basciani S, Fabbri A, et al. Severe oligozoospermia in a young man with chronic myeloiud leukemia on long-term treatment with imatinib started before puberty. Fertil Streril. 2011;95:1120 e15–7.

    Google Scholar 

  10. Krueger DA, Care MM, Agricola K, et al. Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology. 2013;80:574–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnston JB, Navaratnam S, Pitz MW, et al. Targeting the EGFR pathway for cancer therapy. Curr Med Chem. 2006;13:3483–92.

    Article  CAS  PubMed  Google Scholar 

  12. Macdonald JB, Macdonald B, Golitz LE, et al. Cutaneous adverse effects of targeted therapies. Part I: Inhibitors of the cellular membrane. J Am Acad Dermatol. 2015;72:2013–8.

    Article  Google Scholar 

  13. Rodeck U. Skin toxicity caused by EGFR antagonists—an auto inflammatory condition triggered by deregulated IL-1 signalling? J Cell Physiol. 2009;218:32–4.

    Article  CAS  PubMed  Google Scholar 

  14. Fox E, Widemann BC, Chuk MK, et al. Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma. Clin Cancer Res. 2013;19:4239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Astellas Pharma Inc. ClinicalTrials.gov National Library of Medicine (US); Bethesda (MD): 2013. Erlotinib Versus Oral Etoposide in Patients With Recurrent or Refractory Pediatric Ependymoma (PETEY) ClinicalTrials.gov cited 2014 Jul 14. https://clinicaltrials.gov/show/NCT01032070 NLM Identifier: NCT01032070.

  16. Hidalgo M, Siu LL, Nemunaitis J, et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J Clin Oncol. 2001;19:3267–79.

    Article  CAS  PubMed  Google Scholar 

  17. Jacot W, Bessis D, Jorda E. Acneiform eruption induced by epidermal growth factor receptor inhibitors in patients with solid tumors. Br J Dermatol. 2004;151:238.

    Google Scholar 

  18. Luu M, Lai SE, Patel J, et al. Photosensitive rash due to the epidermal growth factor inhibitor erlotinib. Photodermatol Photoimmunol Photomed. 2007;23:42–5.

    Google Scholar 

  19. Chen AP, Setser A, Anadkat MJ, et al. Grading dermatologic adverse events of cancer treatments: the common terminology criteria for adverse events version 4.0. J Am Acad Dermatol. 2012;67:10025–39.

    Google Scholar 

  20. Lacouture ME, Mitchell EP, Piperdi B, et al. Skin toxicity evaluation protocol with panitumunab (STEPP), a phase II, open-label, randomized trial evaluating the impact of a pre-Emptive Skin treatment regimen on skin toxicities and quality of life in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28:1351–7.

    Article  CAS  PubMed  Google Scholar 

  21. Segaert S, Chiritescu G, Lemmens L, et al. Skin toxicities of targeted therapies. Eur J Cancer. 2009;45(Supp 11):295–308.

    Article  PubMed  Google Scholar 

  22. Robert C, Sibaud V, Mateus C, et al. Advances in the mangement of cutaneous toxicities of targeted therapies. Semin Oncol. 2012;39:227–40.

    Article  CAS  PubMed  Google Scholar 

  23. Segaert S, Van Custem E. Clinical signs, pathophysiology and management of skin toxicity during therapy with epidermal growth factor inhibitors. Ann Oncol. 2005;16:1425–33.

    Article  CAS  PubMed  Google Scholar 

  24. Mimeault M, Bonenfant D, Batra SK. New advances on the functions of epidermal growth factor receptor and ceramides in skin cell differentiation, disorders and cancers. Skin Pharmacol Physiol. 2004;17:153–66.

    Article  CAS  PubMed  Google Scholar 

  25. Lichtenberger BM, Gerber PA, Holcmann M, et al. Epidermal EGFR controls cutaneous host defense and prevents inflammation. Sci Transl Med. 2013;5:199ra111.

    Article  PubMed  Google Scholar 

  26. Lacouture ME, Anadkat MJ, Bensadoun RJ, et al. Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities. Support Care Cancer. 2011;19:1079–95.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Garden BC, Wu S, Lacouture ME. The risk of nail changes with epidermal growth factor receptor inhibitors: a systematic review of the literature and meta-analysis. J Am Acad Dermatol. 2012;67:400–8.

    Article  CAS  PubMed  Google Scholar 

  28. Zheng S, Pan Y, Wang J, et al. Gefitinib-induced hair alterations. BMJ Case Rep. 2009;2009. pii: bcr09.2008.0878. Epub 2009 Mar 17.

    Google Scholar 

  29. Cohen PR, Escudier SM, Kurzrock R. Cetuximab-associated elongation of the eyelashes: case report and review of eyelash trichomegaly secondary to epidermal growth factor receptor inhibitors. Am J Clin Dermatol. 2011;12:63–7.

    Article  PubMed  Google Scholar 

  30. Rodriguez NA, Ascaso FJ. Trichomegaly and poliosis of the eyelashes during cetuximab treatment of metastatic colorectal cancer. J Clin Oncol. 2011;29:e532–3.

    Article  PubMed  Google Scholar 

  31. Busam KJ, Capodieci P, Motzer R, et al. Cutaneous side-effects in cancer patients treated with the antiepidermal growth factor receptor antibody C225. Br J Dermatol. 2001;144:1169–76.

    Article  CAS  PubMed  Google Scholar 

  32. Abdullah SE, Haigentz M Jr, Piperdi B. Dermatologic toxicities from monoclonal antibodies and tyrosine kinase inhibitors against EGFR: pathophysiology and management. Chemother Res Pract. 2012;2012:351210. Epub 2012 Sep 11.

    Google Scholar 

  33. Trojan A, Jacky E, Follath F, et al. Necrolytic migratory erythema (glucagonoma)-like skin lesions induced by EGF-receptor inhibition. Swiss Med Wkly. 2003;133:22–3.

    CAS  PubMed  Google Scholar 

  34. Tshamer GG, Bühler S, Bomer M, et al. Grover’s disease induced by cetuximab. Dermatology. 2006;213:37–9.

    Article  Google Scholar 

  35. Serger R, Krebs EG. The MAPK signaling cascade. FASEB J. 1995;9:726–35.

    Google Scholar 

  36. Weber A, Langhanki L, Sommerer F, et al. Mutations of the BRAF gene in squamous cell carcinoma of the head and neck. Oncogene. 2003;22:4757–9.

    Article  CAS  PubMed  Google Scholar 

  37. Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melnaoma. N Engl J Med. 2010;363:809–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lacouture ME, Duvic M, Hauschild A, et al. Analysis of dermatologic events in vemurafenib-treated patients with melanoma. Oncologist. 2013;18:314–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Belum VR, Fischer A, Choi JN, et al. Dermatological adverse events from BRAF inhibitors: a growing problem. Curr Oncol Rep. 2013;15(3):249–59. https://doi.org/10.1007/s11912-013-0308-6.

    Article  CAS  PubMed  Google Scholar 

  40. Chu EY, Wanat KA, Miller CJ, et al. Diverse cutaneous side effects associated with BRAF inhibitor therapy: a clinicopathologic study. J Am Acad Dermatol. 2012;67:1265–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zimmer L, Hillen U, Livingstone E, et al. Atypical melanocytic proliferations and new primary melanomas in patients with advanced melanoma undergoing selective BRAF inhibitions. J Clin Oncol. 2012;30:2375–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hatzivassiliou G, Song K, Yen I, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464:431–5.

    Article  CAS  PubMed  Google Scholar 

  43. Lacouture ME, O’Reilly K, Rosen N, et al. Induction of cutaneous squamous cell carcinomas by RAF inhibitors: cause for concern? J Clin Oncol. 2012;30:329–30.

    Article  CAS  PubMed  Google Scholar 

  44. Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600E mutations. N Engl J Med. 2012;367:1694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Curry JL, Torres-Cabala CA, Kim KB, et al. Dermatologic toxicities to targeted cancer therapy: shared clinical and histologic adverse skin reactions. Int J Dermatol. 2014;53:376–84.

    Article  CAS  PubMed  Google Scholar 

  46. Vignot S, Faivre S, Aguirre D, et al. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol. 2005;16:525–37.

    Article  CAS  PubMed  Google Scholar 

  47. Tee AR, Blenis J. mTOR, translational control and human disease. Semin Cell Dev Biol. 2005;16:29–37.

    Article  CAS  PubMed  Google Scholar 

  48. Kirchner GI, Meier-Wiedenbach I, Manns MP. Clinical pharmacokinetics of everolimus. Clin Pharmacokinet. 2004;43:83–95.

    Article  CAS  PubMed  Google Scholar 

  49. Bissler JJ, McCormack FX, Young LR, et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med. 2008;358:140–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Adams DM, Trenor CC, Hammill AM, et al. Efficacy and safety of sirolimus in the treatment of complicated vascular anomalies. J Pediatr. 2016;137:e20153257.

    Article  Google Scholar 

  51. Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer. 2004;4:361–70.

    Article  CAS  PubMed  Google Scholar 

  52. Franz DN, Belousava E, Sparagana S, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytoma associated with tuberous sclerosis complex (EXIST-1): a multicenter, randomised, placebo-controlled phase 3 trial. Lancet. 2013;381:125–32.

    Article  CAS  PubMed  Google Scholar 

  53. Jóźwiak S, Kotulska K, Berkowitz N, et al. Safety of everolimus in patients younger than 3 years of age: results from EXIST-1, a randomized, controlled clinical trial. J Pediatr. 2016;172:151–155.e1.

    Article  PubMed  Google Scholar 

  54. Spunt SL, Grupp SA, Vik TA, et al. Phase I study of temsirolimus in pediatric patients with recurrent/refractory solid tumors. J Clin Oncol. 2011;29:2933–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Heidary N, Naik H, Burgin S. Chemotherapeutic agents and skin: an update. J Am Acad Dermatol. 2008;58:545–70.

    Article  PubMed  Google Scholar 

  56. Amitaya-Laish I, Stemmer SM, Lacouture ME. Adverse cutaneous reactions secondary to tyrosine kinase inhibitors including imatinib mesylate, nilotinib, and dasatinib. Dermatol Ther. 2011;24:386–95.

    Article  Google Scholar 

  57. Valeyrie L, Bastuj-Garin S, Revuz J, et al. Adverse cutaneous reactions to imatinib (STI571) in Philadelphia chromosome-positive leukemias: a propective study of 54 patients. J Am Acad Dermatol. 2003;48:201–6.

    Article  PubMed  Google Scholar 

  58. Arora B, Kumar L, Sherma A, et al. Pigmentary changes in chronic myeloid leukemia patients treated with imatinib mesylate. Ann Oncol. 2004;15:358–9.

    Article  CAS  PubMed  Google Scholar 

  59. Aleem A. Hypopigmentation of the skin due to imatinib mesylate in patients with chronic myeloid leukemia. Hematol Oncol Stem Cell Ther. 2009;2:358–61.

    Article  CAS  PubMed  Google Scholar 

  60. Saglio G, Hochhaus A, Goh YT, et al. Dasatinib in imatinib-resistant or imatinib-intolerant chromic myeloid leukemia in plast phase after 2 years of follow-up in a phase 3 study: efficacy and tolerability of 140 milligrams once daily and 70 milligrams twice daily. Cancer. 2010;116:3852–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kantarjian HM, Giles FJ, Bhalla KM, et al. Nilotinib is effective in patients with chronic myeloid leukemia in chronic phase after imatinib resistance or intolerance: 24-month follow up results. Blood. 2011;117:1141–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alloo A, Sheu J, Butrynski JE, et al. Ponatinib-induced pityriasiform, folliculocentric and ichtyosiform cutaneous toxicities. Br J Dermatol. 2015;173(2):574–7. Epub 2015 Jul 14

    Article  CAS  PubMed  Google Scholar 

  63. Rapisarda A, Melillo G. Role of the VEGF/VEGFR axis in cancer biology and therapy. Adv Cancer Res. 2012;114:237–67.

    Article  CAS  PubMed  Google Scholar 

  64. Motl S. Bevacizumab in combination chemotherapy for colorectal and other cancers. Am J Health Syst Pharm. 2005;62:1021–32.

    CAS  PubMed  Google Scholar 

  65. Wozel G, Sticherling M, Schon MP. Cutaneous side effects of inhibition of VEGF signal transduction. J Dtsch Dermatol Ges. 2010;8:243–9.

    Article  PubMed  Google Scholar 

  66. Scappaticci FA, Fehrenbacher L, Cartwright T, et al. Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol. 2005;91:173–80.

    Article  CAS  PubMed  Google Scholar 

  67. Fourcade S, Gaudy-Masqueste C, Tasei AM, et al. Localized skin necrosis of steroid-induced striae distensae: an unusual complication of bevacizumab and irinotecan therapy. Arch Dermatol. 2011;147:1227–8.

    Article  PubMed  Google Scholar 

  68. Glade Bender JL, Adamson PC, Reid JM, et al. Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children’s Oncology Group Study. J Clin Oncol. 2008;26:399–405.

    Article  PubMed  Google Scholar 

  69. Kabbinavar F, Hurwitz HI, Fehrenbacher L, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol. 2003;21:60–5.

    Article  CAS  PubMed  Google Scholar 

  70. McLellan B, Kerr H. Cutaneous toxicities of the multikinase inhibitors sorafenib and sunitinib. Dermatol Ther. 2011;24:396–400.

    Article  PubMed  Google Scholar 

  71. Lee WJ, Lee JL, Chang SE, et al. Cutaneous adverse effects in patients treated with the multi targeted kinase inhibitors sorafenib and sunitinib. Br J Dermatol. 2009;161:1045–51.

    Article  CAS  PubMed  Google Scholar 

  72. Lipworth AD, Robert C, Zhu AX. Hand-foot syndrome (hand-foot skin reaction, palmar-plantar erythrodysesthesia): focus on sorafenib and sunitinib. Oncology. 2009;77:257–71.

    Article  CAS  PubMed  Google Scholar 

  73. Widemann BC, Kim A, Fox E, et al. A phase I trial and pharmacokinetic study of sorafenib in children with refractory solid tumors or leukemias: a Children's Oncology Group Phase I Consortium report. Clin Cancer Res. 2012;18:6011–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boers-Doets CB, Epstein JB, Raber-Durlacher JE, et al. Oral adverse envents associated with tyrosine kinase and mammalian target of rapamycin inhibitors in renal cell carcinoma: a structured literature review. Oncologist. 2012;17:135–44.

    Article  CAS  PubMed  Google Scholar 

  75. DuBois SG, Shusterman S, Ingle AM, et al. Phase I and pharmacokinetic study of sunitinib in pediatric patients with refractory solid tumors: a children's oncology group study. Clin Cancer Res. 2011;17:5113–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Autier J, Escudier B, Wechsler J, et al. Prospective study of the cutaneous adverse effects of sorafenib, a novel multikinase inhibitor. Arch Dermatol. 2008;144:886–92.

    Article  CAS  PubMed  Google Scholar 

  77. Lewin J, Farley-Loftus R, Pomeranz MK. Erythema multiforme-like drug reaction to sorafenib. J Drugs Dermatol. 2011;10:1462–3.

    CAS  PubMed  Google Scholar 

  78. Magné N, Chargari C, Auberdiac P, et al. Ultraviolet recall dermatitis reaction with sorafenib. Invest New Drugs. 2011;29:1111–3.

    Article  PubMed  Google Scholar 

  79. Chappell JA, Burkemper NM, Semchyshyn N. Localized dyskeratotic plaque with milia associated with sorafenib. J Drugs Dermatol. 2009;8:573–6.

    PubMed  Google Scholar 

  80. Kong HH, Sibaud V, Chanco Turner ML, et al. Sorafenib-induced eruptive melanocytic lesions. Arch Dermatol. 2008;144:820–2.

    Article  PubMed  PubMed Central  Google Scholar 

Recommended Reading

  • Belum VR, Washington C, Pratilas CA, Sibaud V, Boralevi F, Lacouture ME. Dermatologic adverse events in pediatric patients receiving targeted anticancer therapies: a pooled analysis. Pediatr Blood Cancer. 2015;62:798–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen AP, Setser A, Anadkat MJ, Cotliar J, Olsen EA, Garden BC, Lacouture ME. Grading dermatologic adverse events of cancer treatments: the common terminology criteria for adverse events version 4.0. J Am Acad Dermatol. 2012;67:10025–39.

    Google Scholar 

  • Curry JL, Torres-Cabala CA, Kim KB, Tetzlaff MT, Duvic M, Tsai KY, Hong DS, Prieto VG. Dermatologic toxicities to targeted cancer therapy: shared clinical and histologic adverse skin reactions. Int J Dermatol. 2014;53:376–84.

    Article  CAS  PubMed  Google Scholar 

  • Gore L, DeGregori J, Porter CC. Targeting developmental pathways in children with cancer: what price success? Lancet Oncol. 2013;14:e70–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacouture ME, Anadkat MJ, Bensadoun RJ, Bryce J, Chan A, Epstein JB, Eaby-Sandy B, Murphy BA, MASCC Skin Toxicity Study Group. Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities. Supp Care Cancer. 2011;19:1079–95.

    Article  Google Scholar 

  • Macdonald JB, Macdonald B, Golitz LE, LoRusso P, Sekulic A. Cutaneous adverse effects of targeted therapies. Part I: Inhibitors of the cellular membrane. J Am Acad Dermatol. 2015;72:2013–8.

    Article  Google Scholar 

  • Reyes-Habito CM, Roh EK. Cutaneous reactions to chemotherapeutic drugs and targeted therapies for cancer: Part II Targeted therapies. J Am Acad Dermatol. 2014;71:217e1–e11.

    Article  Google Scholar 

  • Robert C, Sibaud V, Mateus C, Cherpelis BS. Advances in the management of cutaneous toxicities of targeted therapies. Semin Oncol. 2012;39:227–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Vadeboncoeur M.D., F.R.C.P.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Vadeboncoeur, S., LeBoeuf, N.R. (2018). Cutaneous Reactions to Targeted Anticancer Agents. In: Huang, J., Coughlin, C. (eds) Skin Tumors and Reactions to Cancer Therapy in Children. Springer, Cham. https://doi.org/10.1007/978-3-319-66200-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66200-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66199-5

  • Online ISBN: 978-3-319-66200-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics