On Approximate Diagnosability of Metric Systems

  • Giordano PolaEmail author
  • Elena De Santis
  • Maria Domenica Di Benedetto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10469)


The increasing complexity in nowadays engineered systems requires great attention to safety hazards and occurrence of faults, which must be readily detected to possibly restore nominal behavior of the system. The notion of diagnosability plays a key role in this regard, since it corresponds to the possibility of detecting within a finite delay if a fault, or in general a hazardous situation, did occur. In this paper the notion of approximate diagnosability is introduced and characterized for the general class of metric systems, that are typically used in the research community working on hybrid systems to study complex heterogeneous processes in cyber–physical systems. The notion of approximate diagnosability proposed captures the possibility of detecting faults on the basis of measurements corrupted by errors, always introduced by non-ideal sensors in a real environment. A characterization of approximate diagnosability in a set membership framework is provided and the computational complexity of the proposed algorithms analyzed. Then, relations are established between approximate diagnosability of a given metric system and approximate diagnosability of a system that approximately simulates the given one. Application of the proposed results to the study of approximate diagnosability for nonlinear systems, presenting an infinite number of states and of inputs, is finally discussed.



We would like to thank our Master student Andreu Llabrés for fruitful discussions on the topic of the present paper.


  1. 1.
    Angeli, D.: A Lyapunov approach to incremental stability properties. IEEE Trans. Autom. Control 47(3), 410–421 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bayer, B., Burger, M., Allgower, F.: Discrete-time incremental ISS: a framework for robust NMPS. In: European Control Conference, Zurick, Switzerland, pp. 2068–2073, July 2013Google Scholar
  3. 3.
    Bayoudh, M., Travé-Massuyes, L., Olive, X.: Hybrid systems diagnosability by abstracting faulty continuous dynamics. In: Proceedings of the 17th International Principles Diagnosis Workshop, pp. 9–15 (2006)Google Scholar
  4. 4.
    Bayoudh, M., Travé-Massuyes, L., Olive, X.: Hybrid systems diagnosis by coupling continuous and discrete event techniques. In: Proceedings of the IFAC World Congress, pp. 7265–7270 (2008)CrossRefGoogle Scholar
  5. 5.
    Benosman,M.: A survey of some recent results on nonlinear fault tolerant control. Math. Probl. Eng. 2010 (2010)Google Scholar
  6. 6.
    De Persis, C.: Detecting faults from encoded information. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 947–952 (2013)Google Scholar
  7. 7.
    De Santis, E., Pola, G., Di Benedetto, M.D.: On approximate diagnosability of nonlinear systems (2017). arXiv:1704.02138 [math.OC]
  8. 8.
    Debouk, R., Malik, R., Brandin, B.: A modular architecture for diagnosis of discrete event systems. In: Proceedings of the 41th Conference on Decision and Control, Las Vegas, Nevada, USA, pp. 417–422, December 2002Google Scholar
  9. 9.
    Deng, Y., D’Innocenzo, A., Di Benedetto, M.D., Di Gennaro, S., Julius, A.A.: Verification of hybrid automata diagnosability with measurement uncertainty. IEEE Trans. Autom. Control 61, 982–993 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    De Santis, E., Di Benedetto, M.D.: Observability and diagnosability of finite state systems: a unifying framework. Automatica 81, 115–122 (2017, to appear). arXiv:1608.03195 [math.OC]
  11. 11.
    Gao, Z., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant techniques-part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Industr. Electron. 62, 3757–3767 (2015)CrossRefGoogle Scholar
  12. 12.
    Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. IEEE Trans. Autom. Control 52(5), 782–798 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jiang, J.: Fault-tolerant control systems - an introductory overview. Acta Autom. Sinica 31, 161–174 (2005)Google Scholar
  14. 14.
    Lunze, J.: Diagnosis of quantized systems based on a timed discrete-event model. IEEE Trans. Man Cybern. Part A Syst. Hum. 30, 322–335 (2000)CrossRefGoogle Scholar
  15. 15.
    Lunze, J., Richter, J.: Reconfigurable fault-tolerant control: a tutorial introduction. Eur. J. Control 144, 359–386 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Di Benedetto, M.D., Di Gennaro, S., D’Innocenzo, A.: Verification of hybrid automata diagnosability by abstraction. IEEE Trans. Autom. Control 56, 2050–2061 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River (1989)zbMATHGoogle Scholar
  18. 18.
    Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). doi: 10.1007/BFb0017309CrossRefGoogle Scholar
  19. 19.
    Pola, G., Di Benedetto, M.D.: Approximate supervisory control of nonlinear systems with outputs. In: Proceedings of the 56th IEEE Conference on Decision and Control (2017, to appear)Google Scholar
  20. 20.
    Ricker, S.L., van Schuppen, J.H.: Decentralized failure diagnosis with asynchronous communication between diagnosers. In: Proceedings of the European Control Conference, Porto, Portugal (2001)Google Scholar
  21. 21.
    Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Diagnosability of discrete-event systems. IEEE Trans. Autom. Control 40(9), 1555–1575 (1995)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Schmidt, K.W.: Verification of modular diagnosability with local specifications for discrete-event systems. IEEE Trans. Syst. Man Cybern. 43(5), 1130–1140 (2013)CrossRefGoogle Scholar
  23. 23.
    Stengel, R.: Intelligent failure-tolerant control. IEEE Control Syst. Mag. 11, 14–23 (1991)Google Scholar
  24. 24.
    Su, R., Wonham, W.M.: Global and local consistencies in distributed fault diagnosis for discrete-event systems. IEEE Trans. Autom. Control 50(12), 1923–1935 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer, Dordrecht (2009)CrossRefGoogle Scholar
  26. 26.
    Tripakis, S.: Fault diagnosis for timed automata. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 205–221. Springer, Heidelberg (2002). doi: 10.1007/3-540-45739-9_14CrossRefzbMATHGoogle Scholar
  27. 27.
    Wang, W., Girard, A.R., Lafortune, S., Lin, F.: On codiagnosability and coobservability with dynamic observations. IEEE Trans. Autom. Control 56(7), 1551–1566 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang, W., Lafortune, S., Girard, A.R., Lin, F.: Optimal sensor activation for diagnosing discrete event systems. Automatica 46, 1165–1175 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zad, S.H., Kwong, R.H., Wonham, W.M.: Fault diagnosis in discrete-event systems: framework and model reduction. IEEE Trans. Autom. Control 48(7), 51–65 (2003)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zamani, M., Mazo, M., Pola, G., Tabuada, P.: Symbolic models for nonlinear control systems without stability assumptions. IEEE Trans. Autom. Control 57(7), 1804–1809 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zaytoon, J., Lafortune, S.: Overview of fault diagnosis methods for discrete event systems. Annu. Rev. Control 37(2), 308–320 (2013)CrossRefGoogle Scholar
  32. 32.
    Zhang, Y., Jiang, J.: Bibliographical review and reconfigurable fault-tolerant control systems. Annu. Rev. Control 32, 229–252 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Giordano Pola
    • 1
    Email author
  • Elena De Santis
    • 1
  • Maria Domenica Di Benedetto
    • 1
  1. 1.Center of Excellence DEWSUniversity of L’AquilaL’AquilaItaly

Personalised recommendations