Skip to main content

Comparison of Machine Learning Algorithms to Increase Prediction Accuracy of COPD Domain

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10461))

Abstract

Medicine and especially chronic diseases, like everything else on earth is filled with ambiguity. This is why, identifying patients at risk present a big challenge to human brain. Poor control and misdiagnosis of chronic diseases has a great impact quality of life of patients, the expenses and performance of health care system. The global economic cost of chronic diseases could reach $47 trillion by 2030, according to a study by the World Economic Forum (WEF). Beside this economic burden, such treatment failure increases the risk of progression of disease which inevitably leads to premature death or further illness and suffering. Today, health informatics is reshaping the research in the medical domain due to its potential to concurrently overcome the challenges encountered in the traditional healthcare systems. Uncertainty, accuracy, causal attributes and their relationship, all have their places in this new technology through contemporary machine learning algorithms. Prediction of exacerbation of Chronic Obstructive Pulmonary Disease (COPD) is considered one of the most difficult problems in the medical field. In this paper, we will leverage unused machine learning methods to increase prediction accuracy in COPD. To this end, we compared three of the most common machine learning algorithms (decision tree, naive Bayes and Bayesian network) based on ROC metric. Furthermore, we used discretization process for the first time in this context.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Funtowicz, S.O., Ravetz, J.R.: Uncertainty and Quality in Science for Policy, vol. 15. Springer, Dordrecht (1990). doi:10.1007/978-94-009-0621-1

    Book  Google Scholar 

  2. MPOC, bronchite et emphysème, Québec, A.p.d. (2016)

    Google Scholar 

  3. Le fardeau humain et financier de la MPOC - Une des principales causes d’hospitalisation au Canada, Thoracologie S.C.D., Février 2010. http://www.lignesdirectricesrespiratoires.ca/sites/all/files/MPOC_report.pdf

  4. Lareau, S., Moseson, E., Slatore, C.G.: Patient information series. Am. J. Respir. Crit. Care Med. 189(6) (2014)

    Google Scholar 

  5. Burt, L., Corbridge, S.: COPD exacerbations. AJN Am. J. Nurs. 113(2), 34–43 (2013)

    Article  Google Scholar 

  6. Seemungal, T.A., et al.: Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 161(5), 1608–1613 (2000)

    Article  Google Scholar 

  7. Wilkinson, T.M., et al.: Early therapy improves outcomes of exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 169(12), 1298–1303 (2004)

    Article  Google Scholar 

  8. Van der Heijden, M., Velikova, M., Lucas, P.J.: Learning Bayesian networks for clinical time series analysis. J. Biomed. Inform. 48, 94–105 (2014)

    Article  Google Scholar 

  9. Hurst, J.R., et al.: Use of plasma biomarkers at exacerbation of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 174(8), 867–874 (2006)

    Article  Google Scholar 

  10. Simões, P.W., et al.: Metanálise do uso de redes bayesianas no diagnóstico de câncer de mama. Cadernos de Saúde Pública 31(1), 26–38 (2015)

    Article  Google Scholar 

  11. Van der Heijden, M., et al.: An autonomous mobile system for the management of COPD. J. Biomed. Inform. 46(3), 458–469 (2013)

    Article  Google Scholar 

  12. Trappenburg, J.C., et al.: Effects of telemonitoring in patients with chronic obstructive pulmonary disease. Telemed. e-Health 14(2), 138–146 (2008)

    Article  Google Scholar 

  13. Maiolo, C., et al.: Home telemonitoring for patients with severe respiratory illness: the Italian experience. J. Telemed. Telecare 9(2), 67–71 (2003)

    Article  Google Scholar 

  14. Vontetsianos, T., et al.: Telemedicine-assisted home support for patients with advanced chronic obstructive pulmonary disease: preliminary results after nine-month follow-up. J. Telemed. Telecare 11(suppl 1), 86–88 (2005)

    Article  Google Scholar 

  15. Berkhof, F.F., et al.: Telemedicine, the effect of nurse-initiated telephone follow up, on health status and health-care utilization in COPD patients: a randomized trial. Respirology 20(2), 279–285 (2015)

    Article  Google Scholar 

  16. Polisena, J., et al.: Home telehealth for chronic obstructive pulmonary disease: a systematic review and meta-analysis. J. Telemed. Telecare 16(3), 120–127 (2010)

    Article  Google Scholar 

  17. McLean, S., et al.: Telehealthcare for chronic obstructive pulmonary disease: cochrane review and meta-analysis. Br. J. Gen. Pract. 62(604), e739–e749 (2012)

    Article  Google Scholar 

  18. Halpin, D.M., et al.: A randomised controlled trial of the effect of automated interactive calling combined with a health risk forecast on frequency and severity of exacerbations of COPD assessed clinically and using EXACT PRO. Prim. Care Respir. J. 20, 324–331 (2011)

    Article  Google Scholar 

  19. Ryynänen, O.-P., et al.: Bayesian predictors of very poor health related quality of life and mortality in patients with COPD. BMC Med. Inform. Decis. Mak. 13(1), 1 (2013)

    Article  Google Scholar 

  20. Himes, B.E., et al.: Prediction of chronic obstructive pulmonary disease (COPD) in asthma patients using electronic medical records. J. Am. Med. Inform. Assoc. 16(3), 371–379 (2009)

    Article  Google Scholar 

  21. Raghavan, N., et al.: Components of the COPD Assessment Test (CAT) associated with a diagnosis of COPD in a random population sample. COPD: J. Chronic Obstr. Pulm. Dis. 9(2), 175–183 (2012)

    Article  Google Scholar 

  22. Amalakuhan, B., et al.: A prediction model for COPD readmissions: catching up, catching our breath, and improving a national problem. J. Community Hosp. Intern. Med. Perspect. 2(1) (2012)

    Google Scholar 

  23. Sandelowsky, H., et al.: The prevalence of undiagnosed chronic obstructive pulmonary disease in a primary care population with respiratory tract infections-a case finding study. BMC Family Pract. 12(1), 122 (2011)

    Article  Google Scholar 

  24. Sinoquet, C., Mourad, R.: Probabilistic Graphical Models for Genetics, Genomics, and Postgenomics. Oxford University Press, Oxford (2014)

    Book  MATH  Google Scholar 

  25. Rajasekaran, S.: Database about COPD exacerbation (2015). https://github.com/sibrajas/data-python/blob/master/CAX_COPD_TRAIN_data.csv

  26. CrowdAnalytix (2015). https://www.crowdanalytix.com/contests/predict-exacerbation-in-patients-with-copd

  27. Van den Berge, M., et al.: Prediction and course of symptoms and lung function around an exacerbation in chronic obstructive pulmonary disease. Respir. Res. 13(1), 1 (2012)

    Article  Google Scholar 

  28. Weka: Data Mining Software in Java (2011)

    Google Scholar 

  29. Porkodi, R.: Comparison of filter based feature selection algorithms: an overview. Int. J. Innov. Res. Technol. Sci. 2(2), 108–113 (2014)

    Google Scholar 

  30. Bangsuk, J., Cheng-Fa, T.: A comparison of filter and wrapper approaches with data mining techniques for categorical variables selection. Int. J. Innov. Res. Comput. Commun. Eng. (2014)

    Google Scholar 

  31. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lokman Saleh , Hamid Mcheick , Hicham Ajami , Hafedh Mili or Joumana Dargham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Saleh, L., Mcheick, H., Ajami, H., Mili, H., Dargham, J. (2017). Comparison of Machine Learning Algorithms to Increase Prediction Accuracy of COPD Domain. In: Mokhtari, M., Abdulrazak, B., Aloulou, H. (eds) Enhanced Quality of Life and Smart Living. ICOST 2017. Lecture Notes in Computer Science(), vol 10461. Springer, Cham. https://doi.org/10.1007/978-3-319-66188-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66188-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66187-2

  • Online ISBN: 978-3-319-66188-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics