Advertisement

Retrospective Head Motion Estimation in Structural Brain MRI with 3D CNNs

  • Juan Eugenio IglesiasEmail author
  • Garikoitz Lerma-Usabiaga
  • Luis C. Garcia-Peraza-Herrera
  • Sara Martinez
  • Pedro M. Paz-Alonso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10434)

Abstract

Head motion is one of the most important nuisance variables in neuroimaging, particularly in studies of clinical or special populations, such as children. However, the possibility of estimating motion in structural MRI is limited to a few specialized sites using advanced MRI acquisition techniques. Here we propose a supervised learning method to retrospectively estimate motion from plain MRI. Using sparsely labeled training data, we trained a 3D convolutional neural network to assess if voxels are corrupted by motion or not. The output of the network is a motion probability map, which we integrate across a region of interest (ROI) to obtain a scalar motion score. Using cross-validation on a dataset of \(n=48\) healthy children scanned at our center, and the cerebral cortex as ROI, we show that the proposed measure of motion explains away 37% of the variation in cortical thickness. We also show that the motion score is highly correlated with the results from human quality control of the scans. The proposed technique can not only be applied to current studies, but also opens up the possibility of reanalyzing large amounts of legacy datasets with motion into consideration: we applied the classifier trained on data from our center to the ABIDE dataset (autism), and managed to recover group differences that were confounded by motion.

Notes

Acknowledgement

This study was supported by ERC Starting Grant 677697 (“BUNGEE-TOOLS”), UCL EPSRC CDT Award EP/L016478/1, and a GPU donated by Nvidia.

References

  1. 1.
    Van Dijk, K.R., Sabuncu, M.R., Buckner, R.L.: The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59(1), 431–438 (2012)CrossRefGoogle Scholar
  2. 2.
    Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3), 2142–2154 (2012)CrossRefGoogle Scholar
  3. 3.
    Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., Fischl, B.: Spurious group differences due to head motion in a diffusion MRI study. Neuroimage 88, 79–90 (2014)CrossRefGoogle Scholar
  4. 4.
    Reuter, M., Tisdall, M.D., Qureshi, A., Buckner, R.L., van der Kouwe, A.J., Fischl, B.: Head motion during MRI acquisition reduces gray matter volume and thickness estimates. Neuroimage 107, 107–115 (2015)CrossRefGoogle Scholar
  5. 5.
    Maclaren, J., Armstrong, B.S., Barrows, R.T., Danishad, K., Ernst, T., Foster, C.L., Gumus, K., et al.: Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain. PLoS one 7(11), e48088 (2012)CrossRefGoogle Scholar
  6. 6.
    White, N., Roddey, C., Shankaranarayanan, A., Han, E., Rettmann, D., Santos, J., Kuperman, J., Dale, A.: PROMO: real-time prospective motion correction in MRI using image-based tracking. Magn. Reson. Med. 63, 91 (2010)CrossRefGoogle Scholar
  7. 7.
    Tisdall, D., Hess, A., Reuter, M., Meintjes, E., Fischl, B., van der Kouwe, A.: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magn. Reson. Med. 68(2), 389–399 (2012)CrossRefGoogle Scholar
  8. 8.
    Glover, G.H., Li, T.Q., Ress, D.: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 44(1), 162–167 (2000)CrossRefGoogle Scholar
  9. 9.
    Batchelor, P., Atkinson, D., Irarrazaval, P., Hill, D., Hajnal, J., Larkman, D.: Matrix description of general motion correction applied to multishot images. Magn. Reson. Med. 54(5), 1273–1280 (2005)CrossRefGoogle Scholar
  10. 10.
    Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_49 CrossRefGoogle Scholar
  11. 11.
    Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. arXiv preprint arXiv:1506.02142 (2015)
  12. 12.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
  13. 13.
    Coupé, P., Eskildsen, S.F., Manjón, J.V., Fonov, V.S., Collins, D.L.: Simultaneous segmentation and grading of anatomical structures for patient’s classification: application to Alzheimer’s disease. NeuroImage 59(4), 3736–3747 (2012)CrossRefGoogle Scholar
  14. 14.
    Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. psychiatry 19(6), 659–667 (2014)CrossRefGoogle Scholar
  15. 15.
    Wallace, G.L., Dankner, N., Kenworthy, L., Giedd, J.N., Martin, A.: Age-related temporal and parietal cortical thinning in autism spectrum disorders. Brain 133, 3745–3754 (2010)CrossRefGoogle Scholar
  16. 16.
    Zielinski, B.A., Prigge, M.B., Nielsen, J.A., Froehlich, A.L., Abildskov, T.J., Anderson, J.S., Fletcher, P.T., Zygmunt, K.M., et al.: Longitudinal changes in cortical thickness in autism and typical development. Brain 137(6), 1799–1812 (2014)CrossRefGoogle Scholar
  17. 17.
    Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)CrossRefGoogle Scholar
  18. 18.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: 22nd ACM International Conference on Multimedia, pp. 675–678 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Juan Eugenio Iglesias
    • 1
    • 2
    Email author
  • Garikoitz Lerma-Usabiaga
    • 2
  • Luis C. Garcia-Peraza-Herrera
    • 1
  • Sara Martinez
    • 2
  • Pedro M. Paz-Alonso
    • 2
  1. 1.University College LondonLondonUK
  2. 2.Basque Center on Cognition, Brain and Language (BCBL)San SebastiánSpain

Personalised recommendations