Advertisement

Flow Network Based Cardiac Motion Tracking Leveraging Learned Feature Matching

  • Nripesh ParajuliEmail author
  • Allen Lu
  • John C. Stendahl
  • Maria Zontak
  • Nabil Boutagy
  • Imran Alkhalil
  • Melissa Eberle
  • Ben A. Lin
  • Matthew O’Donnell
  • Albert J. Sinusas
  • James S. Duncan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10434)

Abstract

We present a novel cardiac motion tracking method where motion is modeled as flow through a network. The motion is subject to physiologically consistent constraints and solved using linear programming. An additional important contribution of our work is the use of a Siamese neural network to generate edge weights that guide the flow through the network. The Siamese network learns to detect and quantify similarity and dissimilarity between pairs of image patches corresponding to the graph nodes. Despite cardiac motion tracking being an inherently spatiotemporal problem, few methods reliably address it as such. Furthermore, many tracking algorithms depend on tedious feature engineering and metric refining. Our approach provides solutions to both of these problems. We benchmark our method against a few other approaches using a synthetic 4D echocardiography dataset and compare the performance of neural network based feature matching with other features. We also present preliminary results on data from 5 canine cases.

Notes

Acknowledgment

We are immensely thankful of many present and past members of Dr. Albert Sinusas’s lab, who were involved in the image acquisitions. This work was supported in part by the National Institute of Health (NIH) grant number R01HL121226.

References

  1. 1.
    Alessandrini, M., Heyde, B., Queirós, S., Cygan, S., Zontak, M., Somphone, O., Bernard, O., De Craene, M., O’Donnell, M., D’hooge, J.: Detailed evaluation of five 3D speckle tracking algorithms using synthetic echocardiographic recordings (2016)Google Scholar
  2. 2.
    Belongie, S., Malik, J., Puzicha, J.: Shape context: a new descriptor for shape matching and object recognition. In: NIPS, vol. 2, p. 3 (2000)Google Scholar
  3. 3.
    Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1806–1819 (2011)CrossRefGoogle Scholar
  4. 4.
    Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 539–546. IEEE (2005)Google Scholar
  5. 5.
    Compas, C.B., Wong, E.Y., Huang, X., Sampath, S., Lin, B.A., Pal, P., Papademetris, X., Thiele, K., Dione, D.P., Stacy, M., et al.: Radial basis functions for combining shape and speckle tracking in 4D echocardiography. IEEE Trans. Med. Imaging 33(6), 1275–1289 (2014)CrossRefGoogle Scholar
  6. 6.
    CVX Research, I.: CVX: Matlab software for disciplined convex programming, version 2.0, August 2012. http://cvxr.com/cvx
  7. 7.
    De Craene, M., Piella, G., Camara, O., Duchateau, N., Silva, E., Doltra, A.: Dhooge, J., Brugada, J., Sitges, M., Frangi, A.F.: Temporal diffeomorphic free-form deformation: application to motion and strain estimation from 3D echocardiography. Med. Image Anal. 16(2), 427–450 (2012)Google Scholar
  8. 8.
    Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742. IEEE (2006)Google Scholar
  9. 9.
    Huang, X., Dione, D.P., Compas, C.B., Papademetris, X., Lin, B.A., Bregasi, A., Sinusas, A.J., Staib, L.H., Duncan, J.S.: Contour tracking in echocardiographic sequences via sparse representation and dictionary learning. Med. Image Anal. 18(2), 253–271 (2014)CrossRefGoogle Scholar
  10. 10.
    Kroon, D.J.: B-spline grid, image and point based registration (2008). http://www.mathworks.com/matlabcentral/fileexchange/20057-b-spline-grid-image-and-point-based-registration
  11. 11.
    Ledesma-Carbayo, M.J., Kybic, J., Desco, M., Santos, A., Suhling, M., Hunziker, P., Unser, M.: Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation. IEEE Trans. Med. Imaging 24(9), 1113–1126 (2005)CrossRefGoogle Scholar
  12. 12.
    Lin, N., Duncan, J.S.: Generalized robust point matching using an extended free-form deformation model: application to cardiac images. In: 2004 IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 320–323. IEEE (2004)Google Scholar
  13. 13.
    Parajuli, N., et al.: Integrated dynamic shape tracking and RF speckle tracking for cardiac motion analysis. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 431–438. Springer, Cham (2016). doi: 10.1007/978-3-319-46720-7_50 CrossRefGoogle Scholar
  14. 14.
    Simonovsky, M., Gutiérrez-Becker, B., Mateus, D., Navab, N., Komodakis, N.: A deep metric for multimodal registration. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 10–18. Springer, Cham (2016). doi: 10.1007/978-3-319-46726-9_2 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nripesh Parajuli
    • 1
    Email author
  • Allen Lu
    • 2
  • John C. Stendahl
    • 3
  • Maria Zontak
    • 4
  • Nabil Boutagy
    • 3
  • Imran Alkhalil
    • 3
  • Melissa Eberle
    • 3
  • Ben A. Lin
    • 3
  • Matthew O’Donnell
    • 4
  • Albert J. Sinusas
    • 3
    • 5
  • James S. Duncan
    • 1
    • 2
    • 5
  1. 1.Departments of Electrical EngineeringYale UniversityNew HavenUSA
  2. 2.Biomedical EngineeringYale UniversityNew HavenUSA
  3. 3.Internal MedicineYale UniversityNew HavenUSA
  4. 4.Department of BioengineeringUniversity of WashingtonSeattleUSA
  5. 5.Radiology and Biomedical ImagingYale UniversityNew HavenUSA

Personalised recommendations