Fast Estimation of Haemoglobin Concentration in Tissue Via Wavelet Decomposition

  • Geoffrey JonesEmail author
  • Neil T. Clancy
  • Xiaofei Du
  • Maria Robu
  • Simon Arridge
  • Daniel S. Elson
  • Danail Stoyanov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10434)


Tissue oxygenation and perfusion can be an indicator for organ viability during minimally invasive surgery, for example allowing real-time assessment of tissue perfusion and oxygen saturation. Multispectral imaging is an optical modality that can inspect tissue perfusion in wide field images without contact. In this paper, we present a novel, fast method for using RGB images for MSI, which while limiting the spectral resolution of the modality allows normal laparoscopic systems to be used. We exploit the discrete Haar decomposition to separate individual video frames into low pass and directional coefficients and we utilise a different multispectral estimation technique on each. The increase in speed is achieved by using fast Tikhonov regularisation on the directional coefficients and more accurate Bayesian estimation on the low pass component. The pipeline is implemented using a graphics processing unit (GPU) architecture and achieves a frame rate of approximately 15 Hz. We validate the method on animal models and on human data captured using a da Vinci stereo laparoscope.


Minimal invasive surgery Intraoperative imaging Multispectral imaging 



This work was supported by the EPSRC (EP/N013220/1, EP/N022750/1, EP/N027078/1, NS/A000027/1, EP/P012841/1), The Wellcome Trust (WT101957, 201080/Z/16/Z) and the EU-Horizon2020 project EndoVESPA (H2020-ICT-2015-688592).


  1. 1.
    Bensky, K.P., Donahue-Spencer, L., Hertz, G.E., Anderson, M.: The dose-related effects of bolus esmolol on heart rate and blood pressure following laryngoscopy and intubation. AANA J. 68(5), 437–443 (2000)Google Scholar
  2. 2.
    Bosschaart, N., Edelman, G.J., Aalders, M.C.G., van Leeuwen, T.G., Faber, D.J.: A literature review and novel theoretical approach on the optical properties of whole blood. Lasers Med. Sci. 29(2), 453–479 (2013)CrossRefGoogle Scholar
  3. 3.
    Clancy, N.T., Arya, S., Stoyanov, D., Singh, M., Hanna, G.B., Elson, D.S.: Intraoperative measurement of bowel oxygen saturation using a multispectral imaging laparoscope. Biomed. Opt. Exp. 6(10), 4179 (2015)CrossRefGoogle Scholar
  4. 4.
    Clancy, N.T., Saso, S., Stoyanov, D., Sauvage, V., Corless, D.J., Boyd, M., Noakes, D.E., Thum, M.Y., Ghaem-Maghami, S., Smith, J.R., Elson, D.S.: Multispectral imaging of organ viability during uterine transplantation surgery in rabbits and sheep. J. Biomed. Opt. 21(10), 106006 (2016)CrossRefGoogle Scholar
  5. 5.
    Clancy, N.T., Stoyanov, D., James, D.R.C., Marco, A.D., Sauvage, V., Clark, J., Yang, G.Z., Elson, D.S.: Multispectral image alignment using a three channel endoscope in vivo during minimally invasive surgery. Biomed. Opt. Exp. 3(10), 2567–2578 (2012)CrossRefGoogle Scholar
  6. 6.
    Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (SIAM), January 1992.
  7. 7.
    Du, X., Clancy, N., Arya, S., Hanna, G.B., Kelly, J., Elson, D.S., Stoyanov, D.: Robust surface tracking combining features, intensity and illumination compensation. Int. J. Comput. Assist. Radiol. Surg. 10(12), 1915–1926 (2015). Scholar
  8. 8.
    Fang, Q.: Mesh-based monte carlo method using fast ray-tracing in plücker coordinates. Biomed. Opt. Exp. 1(1), 165 (2010)CrossRefGoogle Scholar
  9. 9.
    Guazzi, A.R., Villarroel, M., Jorge, J., Daly, J., Frise, M.C., Robbins, P.A., Tarassenko, L.: Non-contact measurement of oxygen saturation with an RGB camera. Biomed. Opt. Exp. 6(9), 3320 (2015). Scholar
  10. 10.
    Jones, G., Clancy, N., Helo, Y., Arridge, S., Elson, D., Stoyanov, D.: Bayesian estimation of intrinsic tissue oxygenation and perfusion from RGB images. IEEE Trans. Med. Imaging 1 (2017)Google Scholar
  11. 11.
    Jones, G., Clancy, N.T., Arridge, S., Elson, D.S., Stoyanov, D.: Inference of tissue haemoglobin concentration from stereo RGB. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, S.-L. (eds.) MIAR 2016. LNCS, vol. 9805, pp. 50–58. Springer, Cham (2016). doi: 10.1007/978-3-319-43775-0_5CrossRefGoogle Scholar
  12. 12.
    Nishidate, I., Maeda, T., Niizeki, K., Aizu, Y.: Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the wiener estimation method. Sensors 13(6), 7902–7915 (2013)CrossRefGoogle Scholar
  13. 13.
    Robu, M.R., Leclerc-Chalvet, M., Stoyanov, D.: Radiometric calibration for a spectrophotometric analysis pipeline for assessing burns. In: CRAS, September 2015Google Scholar
  14. 14.
    Wirkert, S.J., Clancy, N.T., Stoyanov, D., Arya, S., Hanna, G.B., Schlemmer, H.-P., Sauer, P., Elson, D.S., Maier-Hein, L.: Endoscopic sheffield index for unsupervised in vivo spectral band selection. In: Luo, X., Reichl, T., Mirota, D., Soper, T. (eds.) CARE 2014. LNCS, vol. 8899, pp. 110–120. Springer, Cham (2014). doi: 10.1007/978-3-319-13410-9_11CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Geoffrey Jones
    • 1
    Email author
  • Neil T. Clancy
    • 1
  • Xiaofei Du
    • 1
  • Maria Robu
    • 1
  • Simon Arridge
    • 1
  • Daniel S. Elson
    • 1
  • Danail Stoyanov
    • 1
  1. 1.The Centre for Medical Image ComputingUniversity College LondonLondonUK

Personalised recommendations