Advertisement

Kernel-Regularized ICA for Computing Functional Topography from Resting-State fMRI

  • Junyan WangEmail author
  • Yonggang Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10433)

Abstract

Topographic regularity is a fundamental property in brain connectivity. In this work, we present a novel method for studying topographic regularity of functional connectivity with resting-state fMRI (rfMRI). Our main idea is to incorporate topographically regular structural connectivity in independent component analysis (ICA), and our method is motivated by the recent development of novel tractography and fiber filtering algorithms that can generate highly organized fiber bundles connecting different brain regions. By leveraging these cutting-edge fiber tracking and filtering algorithms, here we develop a novel kernel-regularized ICA method for extracting functional topography with rfMRI signals. In our experiments, we use rfMRI scans of 35 unrelated, right-handed subjects from the Human Connectome Project (HCP) to study the functional topography of the motor cortex. We first demonstrate that our method can generate functional connectivity maps with more regular topography than conventional group ICA. We also show that the components extracted by our algorithm are able to capture co-activation patterns that represent the organized topography of the motor cortex across the hemispheres. Finally, we show that our method achieves improved reproducibility as compared to conventional group ICA.

References

  1. 1.
    Patel, G.H., Kaplan, D.M., Snyder, L.H.: Topographic organization in the brain: searching for general principles. Trends Cogn. Sci. 18(7), 351–363 (2014)CrossRefGoogle Scholar
  2. 2.
    Engel, S.A., Glover, G.H., Wandell, B.A.: Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7(2), 181–192 (1997)CrossRefGoogle Scholar
  3. 3.
    Hickey, T.L., Guillery, R.W.: Variability of laminar patterns in the human lateral geniculate nucleus. J. Comp. Neurol. 183(2), 221–246 (1979)CrossRefGoogle Scholar
  4. 4.
    Ruben, J., Schwiemann, J., Deuchert, M., Meyer, R., Krause, T., Curio, G., Villringer, K., Kurth, R., Villringer, A.: Somatotopic organization of human secondary somatosensory cortex. Cereb. Cortex 11(5), 463–473 (2001)CrossRefGoogle Scholar
  5. 5.
    Benson, N.C., Butt, O.H., Datta, R., Radoeva, P.D., Brainard, D.H., Aguirre, G.K.: The retinotopic organization of striate cortex is well predicted by surface topology. Curr. Biol. CB 22(21), 2081–2085 (2012)CrossRefGoogle Scholar
  6. 6.
    Heinzle, J., Kahnt, T., Haynes, J.D.: Topographically specific functional connectivity between visual field maps in the human brain. Neuroimage 56(3), 1426–1436 (2011)CrossRefGoogle Scholar
  7. 7.
    Van Den Heuvel, M.P., Pol, H., Hilleke, E.: Specific somatotopic organization of functional connections of the primary motor network during resting state. Hum. Brain Mapp. 31(4), 631–644 (2010)Google Scholar
  8. 8.
    Haak, K.V., Marquand, A.F., Beckmann, C.F.: Connectopic mapping with resting-state fMRI. arXiv preprint arXiv:1602.07100 (2016)
  9. 9.
    Calhoun, V., Adali, T., Pearlson, G., Pekar, J.: Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum. Brain Mapp. 13(1), 43–53 (2001)CrossRefGoogle Scholar
  10. 10.
    Beckmann, C.F., Smith, S.M.: Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23(2), 137–152 (2004)CrossRefGoogle Scholar
  11. 11.
    Calhoun, V.D., Adali, T.: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Rev. Biomed. Eng. 5, 60–73 (2012)CrossRefGoogle Scholar
  12. 12.
    Aydogan, D.B., Shi, Y.: Probabilistic tractography for topographically organized connectomes. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 201–209. Springer, Cham (2016). doi: 10.1007/978-3-319-46720-7_24 CrossRefGoogle Scholar
  13. 13.
    Wang, J., Aydogan, D.B., Varma, R., Toga, A.W., Shi, Y.: Topographic regularity for tract filtering in brain connectivity. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 263–274. Springer, Cham (2017). doi: 10.1007/978-3-319-59050-9_21 CrossRefGoogle Scholar
  14. 14.
    Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80(8), 62 (2013)CrossRefGoogle Scholar
  15. 15.
    Owen, J.P., Ziv, E., Bukshpun, P., Pojman, N., Wakahiro, M., Berman, J.I., Roberts, T.P., Friedman, E.J., Sherr, E.H., Mukherjee, P.: Test-retest reliability of computational network measurements derived from the structural connectome of the human brain. Brain Connect. 3(2), 160–176 (2013)CrossRefGoogle Scholar
  16. 16.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)CrossRefGoogle Scholar
  17. 17.
    Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4), 411–430 (2000)CrossRefGoogle Scholar
  18. 18.
    Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)CrossRefGoogle Scholar
  19. 19.
    Tournier, J.D., Calamante, F., Connelly, A.: MRtrix: Diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)CrossRefGoogle Scholar
  20. 20.
    Tran, G., Shi, Y.: Fiber orientation and compartment parameter estimation from multi-shell diffusion imaging. IEEE Trans. Med. Imaging 34(11), 2320–2332 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics InstituteKeck School of Medicine of University of Southern CaliforniaLos AngelesUSA

Personalised recommendations