Advertisement

Robust Non-rigid Registration Through Agent-Based Action Learning

  • Julian KrebsEmail author
  • Tommaso Mansi
  • Hervé Delingette
  • Li Zhang
  • Florin C. Ghesu
  • Shun Miao
  • Andreas K. Maier
  • Nicholas Ayache
  • Rui Liao
  • Ali Kamen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10433)

Abstract

Robust image registration in medical imaging is essential for comparison or fusion of images, acquired from various perspectives, modalities or at different times. Typically, an objective function needs to be minimized assuming specific a priori deformation models and predefined or learned similarity measures. However, these approaches have difficulties to cope with large deformations or a large variability in appearance. Using modern deep learning (DL) methods with automated feature design, these limitations could be resolved by learning the intrinsic mapping solely from experience. We investigate in this paper how DL could help organ-specific (ROI-specific) deformable registration, to solve motion compensation or atlas-based segmentation problems for instance in prostate diagnosis. An artificial agent is trained to solve the task of non-rigid registration by exploring the parametric space of a statistical deformation model built from training data. Since it is difficult to extract trustworthy ground-truth deformation fields, we present a training scheme with a large number of synthetically deformed image pairs requiring only a small number of real inter-subject pairs. Our approach was tested on inter-subject registration of prostate MR data and reached a median DICE score of .88 in 2-D and .76 in 3-D, therefore showing improved results compared to state-of-the-art registration algorithms.

References

  1. 1.
    Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V., van der Smagt, P., Cremers, D., Brox, T.: Flownet: learning optical flow with convolutional networks. In: IEEE International Conference on Computer Vision (ICCV) (2015)Google Scholar
  2. 2.
    Ghesu, F.C., Georgescu, B., Mansi, T., Neumann, D., Hornegger, J., Comaniciu, D.: An artificial agent for anatomical landmark detection in medical images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 229–237. Springer, Cham (2016). doi: 10.1007/978-3-319-46726-9_27 CrossRefGoogle Scholar
  3. 3.
    Klein, S., Staring, M., et al.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)CrossRefGoogle Scholar
  4. 4.
    Liao, R., Miao, S., de Tournemire, P., Grbic, S., Kamen, A., Mansi, T., Comaniciu, D.: An artificial agent for robust image registration. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI 2017) (2017)Google Scholar
  5. 5.
    Lorenzi, M., Ayache, N., Frisoni, G.B., et al.: LCC-Demons: a robust and accurate symmetric diffeomorphic registration algorithm. NeuroImage 81, 470–483 (2013)CrossRefGoogle Scholar
  6. 6.
    Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)CrossRefGoogle Scholar
  7. 7.
    Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. IEEE Trans. Med. Imaging 22(8), 1014–1025 (2003)CrossRefGoogle Scholar
  8. 8.
    Simonovsky, M., Gutiérrez-Becker, B., Mateus, D., Navab, N., Komodakis, N.: A deep metric for multimodal registration. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 10–18. Springer, Cham (2016). doi: 10.1007/978-3-319-46726-9_2 CrossRefGoogle Scholar
  9. 9.
    Tian, Z., Liu, L., Fei, B.: A fully automatic multi-atlas based segmentation method for prostate MR images. In: SPIE Medical Imaging, p. 941340 (2015)Google Scholar
  10. 10.
    Yang, X., Kwitt, R., Niethammer, M.: Fast predictive image registration. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 48–57. Springer, Cham (2016). doi: 10.1007/978-3-319-46976-8_6 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Julian Krebs
    • 1
    • 2
    • 3
    Email author
  • Tommaso Mansi
    • 1
  • Hervé Delingette
    • 2
  • Li Zhang
    • 1
  • Florin C. Ghesu
    • 1
    • 3
  • Shun Miao
    • 1
  • Andreas K. Maier
    • 3
  • Nicholas Ayache
    • 2
  • Rui Liao
    • 1
  • Ali Kamen
    • 1
  1. 1.Siemens Healthineers, Medical Imaging TechnologiesPrincetonUSA
  2. 2.Université Côte d’Azur, Inria, Asclepios TeamSophia AntipolisFrance
  3. 3.Pattern Recognition LabFriedrich-Alexander-UniversitätErlangenGermany

Personalised recommendations