Advertisement

Unsupervised Discovery of Spatially-Informed Lung Texture Patterns for Pulmonary Emphysema: The MESA COPD Study

  • Jie Yang
  • Elsa D. Angelini
  • Pallavi P. Balte
  • Eric A. Hoffman
  • John H. M. Austin
  • Benjamin M. Smith
  • Jingkuan Song
  • R. Graham Barr
  • Andrew F. LaineEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10433)

Abstract

Unsupervised discovery of pulmonary emphysema subtypes offers the potential for new definitions of emphysema on lung computed tomography (CT) that go beyond the standard subtypes identified on autopsy. Emphysema subtypes can be defined on CT as a variety of textures with certain spatial prevalence. However, most existing approaches for learning emphysema subtypes on CT are limited to texture features, which are sub-optimal due to the lack of spatial information. In this work, we exploit a standardized spatial mapping of the lung and propose a novel framework for combining spatial and texture information to discover spatially-informed lung texture patterns (sLTPs). Our spatial mapping is demonstrated to be a powerful tool to study emphysema spatial locations over different populations. The discovered sLTPs are shown to have high reproducibility, ability to encode standard emphysema subtypes, and significant associations with clinical characteristics.

Notes

Acknowledgements

Thanks NIH/NHLBI R01-HL121270, R01-HL077612, RC1-HL100543, R01-HL093081 and N01-HC095159 through N01-HC-95169, UL1-RR-024156 and UL1-RR-025005 for funding.

References

  1. 1.
    Smith, B.M., Austin, J.H., et al.: Pulmonary emphysema subtypes on computed tomography: the MESA COPD study. Am. J. Med. 127(1), 94.e7–94.e23 (2014)CrossRefGoogle Scholar
  2. 2.
    Sørensen, L., Shaker, S.B., et al.: Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans. Med. Imaging 29(2), 559–569 (2010)CrossRefGoogle Scholar
  3. 3.
    Gangeh, M.J., Sørensen, L., Shaker, S.B., Kamel, M.S., Bruijne, M., Loog, M.: A texton-based approach for the classification of lung parenchyma in CT images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 595–602. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15711-0_74 CrossRefGoogle Scholar
  4. 4.
    Binder, P., Batmanghelich, N.K., Estepar, R.S.J., Golland, P.: Unsupervised discovery of emphysema subtypes in a large clinical cohort. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 180–187. Springer, Cham (2016). doi: 10.1007/978-3-319-47157-0_22 CrossRefGoogle Scholar
  5. 5.
    Hame, Y., et al.: Sparse sampling and unsupervised learning of lung texture patterns in pulmonary emphysema: MESA COPD study. In: IEEE ISBI, pp. 109–113 (2015)Google Scholar
  6. 6.
    Yang, J., et al.: Explaining radiological emphysema subtypes with unsupervised texture prototypes: MESA COPD study. In: Müller, H., et al. (eds.) MCV 2016, BAMBI 2016. LNCS, vol. 10081, pp. 69–80. Springer, Cham (2016)CrossRefGoogle Scholar
  7. 7.
    Murphy, K., et al.: Toward automatic regional analysis of pulmonary function using inspiration and expiration thoracic CT. Med. Phys. 39(3), 1650–1662 (2012)CrossRefGoogle Scholar
  8. 8.
    Gorelick, L., et al.: Shape representation and classification using the poisson equation. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1991–2005 (2006)CrossRefGoogle Scholar
  9. 9.
    Yang, J., Angelini, E.D., Balte, P.P., Hoffman, E.A., Wu, C.O., Venkatesh, B.A., Barr, R.G., Laine, A.F.: Emphysema quantification on cardiac CT scans using hidden markov measure field model: the MESA lung study. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 624–631. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_72 CrossRefGoogle Scholar
  10. 10.
    Hame, Y., Angelini, E.D., et al.: Adaptive quantification and longitudinal analysis of pulmonary emphysema with a hidden markov measure field model. IEEE Trans. Med. Imaging 33(7), 1527–1540 (2014)CrossRefGoogle Scholar
  11. 11.
    Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Nat. Acad. Sci. 105(4), 1118–1123 (2008)CrossRefGoogle Scholar
  12. 12.
    Roth, V., Lange, T., Braun, M., Buhmann, J.: A resampling approach to cluster validation. In: Härdle, W., Rönz, B. (eds.) Compstat, pp. 123–128. Physica, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jie Yang
    • 1
  • Elsa D. Angelini
    • 1
    • 2
  • Pallavi P. Balte
    • 3
  • Eric A. Hoffman
    • 5
  • John H. M. Austin
    • 4
  • Benjamin M. Smith
    • 3
    • 6
  • Jingkuan Song
    • 1
  • R. Graham Barr
    • 3
    • 7
  • Andrew F. Laine
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringColumbia UniversityNew YorkUSA
  2. 2.ITMAT Data Science Group, NIHR Imperial BRC, Imperial CollegeLondonUK
  3. 3.Department of MedicineColumbia University Medical CenterNew YorkUSA
  4. 4.Department of RadiologyColumbia University Medical CenterNew YorkUSA
  5. 5.Department of Radiology, Medicine and Biomedical EngineeringUniversity of IowaIowa CityUSA
  6. 6.Department of MedicineMcGill University Health CenterMontrealCanada
  7. 7.Department of EpidemiologyColumbia University Medical CenterNew YorkUSA

Personalised recommendations