Skip to main content

Using Ontologies to Query Probabilistic Numerical Data

  • Conference paper
  • First Online:
Frontiers of Combining Systems (FroCoS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10483))

Included in the following conference series:

Abstract

We consider ontology-based query answering in a setting where some of the data are numerical and of a probabilistic nature, such as data obtained from uncertain sensor readings. The uncertainty for such numerical values can be more precisely represented by continuous probability distributions than by discrete probabilities for numerical facts concerning exact values. For this reason, we extend existing approaches using discrete probability distributions over facts by continuous probability distributions over numerical values. We determine the exact (data and combined) complexity of query answering in extensions of the well-known description logics \(\mathcal {EL}\) and \(\mathcal {ALC}\) with numerical comparison operators in this probabilistic setting.

Supported by the DFG within the collaborative research center SFB 912 (HAEC) and the research unit FOR 1513 (HYBRIS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, the set \(\mathbb {D} \subseteq \mathbb {R} \) denotes the dyadic rationals, that is, the set of all real numbers that have a finite number of bits after the binary point.

  2. 2.

    Note that the counting complexity classes considered here are all closed under this operation. To see this, consider f and g characterized by the relations R and \(R'\) s.t. \(R'=\{(x,y\#z) \mid R(x,y), z\in \{0,1\}^*,|z|=p(x)\}\). Clearly, \(g(x)=2^{p(x)}f(x)\).

References

  1. Adams, M.R., Guillemin, V.: Measure Theory and Probability. Springer, Boston (1996)

    Book  MATH  Google Scholar 

  2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. J. Artif. Intell. Res. 36, 1–69 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Artale, A., Ryzhikov, V., Kontchakov, R.: DL-Lite with attributes and datatypes. In: Proceedings ECAI 2012, pp. 61–66. IOS Press (2012)

    Google Scholar 

  4. Baader, F., Borgwardt, S., Lippmann, M.: Query rewriting for DL-Lite with \(n\)-ary concrete domains. In: Proceedings IJCAI 2017 (2017, to appear)

    Google Scholar 

  5. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Proceedings of IJCAI 2005, pp. 364–369. Professional Book Center (2005)

    Google Scholar 

  6. Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept languages. In: Proceedings of IJCAI 1991, pp. 452–457 (1991)

    Google Scholar 

  7. Baader, F., Koopmann, P., Turhan, A.Y.: Using ontologies to query probabilistic numerical data (extended version). LTCS-Report 17–05, Chair for Automata Theory, Technische Universität Dresden, Germany (2017). https://lat.inf.tu-dresden.de/research/reports.html

  8. Belle, V., Van den Broeck, G., Passerini, A.: Hashing-based approximate probabilistic inference in hybrid domains: an abridged report. In: Proceedings of IJCAI 2016, pp. 4115–4119 (2016)

    Google Scholar 

  9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reas. 39(3), 385–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. Artif. Intell. 195, 335–360 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dalvi, N., Suciu, D.: Management of probabilistic data: foundations and challenges. In: Proceedings of SIGMOD 2007, pp. 1–12. ACM (2007)

    Google Scholar 

  12. Dargie, W.: The role of probabilistic schemes in multisensor context-awareness. In: Proceedings of PerCom 2007, pp. 27–32. IEEE (2007)

    Google Scholar 

  13. Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete problems for counting complexity classes. Theoret. Comput. Sci. 340(3), 496–513 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Elkin, P.L., Brown, S.H., Husser, C.S., Bauer, B.A., Wahner-Roedler, D., Rosenbloom, S.T., Speroff, T.: Evaluation of the content coverage of SNOMED CT: ability of SNOMED clinical terms to represent clinical problem lists. Mayo Clin. Proc. 81(6), 741–748 (2006)

    Article  Google Scholar 

  15. Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Conjunctive query answering for the description logic \(\cal{SHIQ}\). J. Artif. Intell. Res. (JAIR) 31, 157–204 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Hemaspaandra, L.A., Vollmer, H.: The satanic notations: counting classes beyond \(\# {P}\) and other definitional adventures. ACM SIGACT News 26(1), 2–13 (1995)

    Article  Google Scholar 

  17. Hernich, A., Lemos, J., Wolter, F.: Query answering in DL-Lite with datatypes: a non-uniform approach. In: Proceedings of AAAI 2017 (2017)

    Google Scholar 

  18. Hoover, H.J.: Feasible real functions and arithmetic circuits. SIAM J. Comput. 19(1), 182–204 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jung, J.C., Lutz, C.: Ontology-based access to probabilistic data with OWL QL. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 182–197. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35176-1_12

    Chapter  Google Scholar 

  20. Ko, K.I.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)

    Book  MATH  Google Scholar 

  21. Kumar, N., Khunger, M., Gupta, A., Garg, N.: A content analysis of smartphone-based applications for hypertension management. J. Am. Soc. Hypertens. 9(2), 130–136 (2015)

    Article  Google Scholar 

  22. Lutz, C.: Adding numbers to the \(\cal{SHIQ}\) description logic–first results. In: Proceedings KR 2001, pp. 191–202. Citeseer (2001)

    Google Scholar 

  23. Lutz, C.: The complexity of description logics with concrete domains. Ph.D. thesis, RWTH Aachen (2002)

    Google Scholar 

  24. Lutz, C.: Description logics with concrete domains–a survey. In: Advances in Modal Logic 4, pp. 265–296. King’s College Publications (2002)

    Google Scholar 

  25. Lutz, C.: NExpTime-complete description logics with concrete domains. ACM Trans. Comput. Logic (TOCL) 5(4), 669–705 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lutz, C.: The complexity of conjunctive query answering in expressive description logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 179–193. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71070-7_16

    Chapter  Google Scholar 

  27. Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty. In: Proceedings of KR 2010, pp. 393–403. AAAI Press (2010)

    Google Scholar 

  28. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description logic \(\cal{EL}\) using a relational database system. In: Proceedings of IJCAI 2009, pp. 2070–2075. IJCAI/AAAI (2009)

    Google Scholar 

  29. Rector, A., Gangemi, A., Galeazzi, E., Glowinski, A., Rossi-Mori, A.: The GALEN CORE model schemata for anatomy: towards a re-usable application-independent model of medical concepts. In: Proceedings of MIE 1994, pp. 229–233 (1994)

    Google Scholar 

  30. Rosati, R.: On conjunctive query answering in \(\cal{EL}\). In: Proceedings of DL 2007, pp. 451–458. CEUR-WS.org (2007)

    Google Scholar 

  31. Savković, O., Calvanese, D.: Introducing datatypes in DL-Lite. In: Proceedings of ECAI 2012, pp. 720–725 (2012)

    Google Scholar 

  32. Schild, K.: A correspondence theory for terminological logics: preliminary report. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of IJCAI 1991, pp. 466–471. Morgan Kaufmann (1991)

    Google Scholar 

  33. Singh, S., Mayfield, C., Mittal, S., Prabhakar, S., Hambrusch, S., Shah, R.: Orion 2.0: native support for uncertain data. In: Proceedings of SIGMOD 2008, pp. 1239–1242. ACM (2008)

    Google Scholar 

  34. Thrun, S., Burgard, W., Fox, D.: A probabilistic approach to concurrent mapping and localization for mobile robots. Auton. Robots 5(3–4), 253–271 (1998)

    Article  MATH  Google Scholar 

  35. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. (CSUR) 38(4), 13 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Franz Baader , Patrick Koopmann or Anni-Yasmin Turhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Baader, F., Koopmann, P., Turhan, AY. (2017). Using Ontologies to Query Probabilistic Numerical Data. In: Dixon, C., Finger, M. (eds) Frontiers of Combining Systems. FroCoS 2017. Lecture Notes in Computer Science(), vol 10483. Springer, Cham. https://doi.org/10.1007/978-3-319-66167-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66167-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66166-7

  • Online ISBN: 978-3-319-66167-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics