Advertisement

Vasiliev’s Ideas for Non-Aristotelian Logics: Insight Towards Paraconsistency

Chapter
Part of the Synthese Library book series (SYLI, volume 387)

Abstract

In this paper we analyze some of Vasiliev’s main theses on non-Aristotelian logics, in order to show that some of his ideas do indeed match those of present-day paraconsistent logic. Considered from a historical perspective, Vasiliev’s contribution to the history of logic has great intentional value, and his work contains many new ideas that could be extended by others in various ways.

Keywords

Logic Logic and metalogic Imaginary logic Principle of the excluded middle Principle of non-contradiction Principle of non-self-contradiction Paraconsistency Many-valuedness Non-classical logics Russian philosophy 

Notes

Acknowledgements

We would like to thank José Veríssimo Teixeira da Mata and an anonymous referee for their helpfulness in pointing out to us recent studies and translations related to Vasiliev’s work.

References

  1. Arruda, A. I. (1977). On the imaginary logic of N. A. Vasilev. In A. I. Arruda, N. C. A. da Costa, & R. Chuaqui (Eds.), Non-classical logics, model theory and computability (Studies in Logic and the Foundations of Mathematics, Vol. 89, pp. 3–22). Amsterdam: North-Holland.Google Scholar
  2. Arruda, A. I. (1980). A survey of paraconsistent logic. In A. I. Arruda, N. C. A. da Costa, & R. Chuaqui (Eds.), Latin American symposium on mathematical logic, IV – 1978, Santiago (Mathematical logic in Latin America: Proceedings, pp. 1–41). Amsterdam: North-Holland. (Synthese Historical Library, 9).Google Scholar
  3. Arruda, A. I. (1984). N. A. Vasilev: a forerunner of paraconsistent logic. Philosophia Naturalis, 21, 427–491.Google Scholar
  4. Arruda, A. I. (1989). Aspects of the historical development of paraconsistent logic. In G.Priest, R. Routley, & J. Norman (Eds.), Paraconsistent logic: essays on the inconsistent (pp. 99–130). München: Philosophia Verlag.Google Scholar
  5. Arruda, A. I. (1990). N. A. Vasilev e a lógica paraconsistente. [N.A. Vasiliev and Paraconsistent logic, in Portuguese]. Campinas, SP: Centro de Lógica, Epistemologia e História da Ciência, Universidade Estadual de Campinas. (Coleção CLE, 7).Google Scholar
  6. Bazhanov, V. A. (1988a). Nikolai Aleksandrovich Vasil’ev. 1880–1940. Moskva: Nauka.Google Scholar
  7. Bazhanov, V. A. (1988b). O popytkakh formal’nogo predstavleniia voobrazhaemoi logiki N. A. Vasil’eva [On the attempts of a formal representation of the imaginary logic of N. A. Vasiliev in Russian]. In Metodologischeskii analiz osnovanii matematiki. [The methodological analysis of the foundations of mathematics, in Russian] (pp. 142–147). Moskva: Nauka.Google Scholar
  8. Bazhanov, V. A. (1998). Towards the reconstruction of the early history of paraconsistent logic: the prerequisites of N. A. Vasiliev’s imaginary logic. Logique & Analyse. Brussels, 161–162–163, 17–20.Google Scholar
  9. Bazhanov, V. A. (2009). N. A. Vasil’ev i ego voobrazhaemaia logika. Voskreshenie odnoi zabytoi idei. [N. A. Vasil’ev and his imaginary logic: the rebirth of a forgotten idea, in Russian]. Moscow: Kanon+.Google Scholar
  10. Bazhanov, V. A. (2011). The dawn of paraconsistency: Russia’s logical thought in the turn of XX century. Manuscrito: Internacional Journal of Philosophy, 34(1), 89–98. Campinas, SP.Google Scholar
  11. Béziau, J. -Y., & Costa-Leite, A. (2005). What is universal logic? In J.-Y. Béziau & A. Costa-Leite (Eds.), Handbook of the first world congress and school on universal logic. Montreux: UNILOG’05.Google Scholar
  12. Brouwer, L. E. J. (1908). De onbetrouwbaarheid der logische principes. [The unrealibility of the logical principles, in Dustch] Tijdschrift voor Wijsbegeerte 2, 152–158.Google Scholar
  13. Brouwer, L. E. J. (1913). Intuitionism and formalism. Bulletin of the American Mathematical Society, 20, 81–96.Google Scholar
  14. Church, A. (1936). A bibliography of symbolic logic. The Journal of Symbolic Logic, 1(1), 121–216.Google Scholar
  15. Church, A. (1956). Introduction to mathematical logic. Princeton: Princeton University Press.Google Scholar
  16. Comey, D. D. (1965). Review of Smirnov (1962). The Journal of Symbolic Logic, 30(3), 368–370.CrossRefGoogle Scholar
  17. da Costa, N. C. A. (1963). Sistemas formais inconsistentes. [Inconsistent formal systems, in Portuguese]. Thesis (Mathematical analysis and superior analysis, full professorship) – Faculdade de Filosofia, Ciências e Letras, Universidade Federal do Paraná, Curitiba.Google Scholar
  18. da Costa, N. C. A. (1974). On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 15(4), 497–510.CrossRefGoogle Scholar
  19. da Costa, N. C. A. (1980). Ensaio sobre os fundamentos da lógica. [Essays on the foundations of logic, in Portuguese], São Paulo: Edusp/Hucitec.Google Scholar
  20. da Costa, N. C. A. (1997). Logiques classiques et non classiques: essais sur les fondements de la logique. Traduit du portugais et complété par Jean-Yves Béziau. Paris: Masson.Google Scholar
  21. da Mata, J. V. T. (2013). Review of Bazhanov (2009). In Logic and logical philosophy (Vol. 22, pp. 131–135). Toruń: Nicolaus Copernicus University.Google Scholar
  22. D’Ottaviano, I. M. L. (1990). On the development of paraconsistent logic and da Costa’s work. The Journal of Non-Classical Logic. Campinas, 7(1/2), 89–152.Google Scholar
  23. Gomes, E. L. (2013). Sobre a história da paraconsistentcia e a olra de da Costa: a instavraçăo da lógica paraconsistente [On the history of paraconsistency and da Costa’s work: the establishment of paraconsistent logic, in Portuguese]. 535p + appendixes. Thesis (Ph.D. in Philosophy) – [Instituto de Filosofiae, ciências Humans, Universidade Estadoal de Campinas, SP, in Portuguese].Google Scholar
  24. Gomes, E. L., & D’Ottaviano, I. M. L. (2010). Aristotle’s theory of deduction and paraconsistency. Principia: International Journal of Epistemology. Florianópolis, SC, 14(1), 71–97.Google Scholar
  25. Gomes, E. L., & D’Ottaviano, I. M. L. (2017). Para além das Colunas de Hércules, uma história da paraconsistência: de Heráclito a Newton da Costa [Beyond the Columns of Hercules, a history of paraconsistency: from Heraclitus to Newton da Costa, in Portuguese]. Campinas: Editora da Unicamp; Centro de Lógica, Epistemologia e História da Ciência. (Série Unicamp Ano 50, 50; Coleção CLE, 80).Google Scholar
  26. Hessen, S. I. (1910). Retsenziia na stat’iu N. A. Vasil’eva: “O chastnykh suzhdeniiakh, o treugol’nike protivopolozhnostei, o zakone iskliuchennogo chetvertogo” [Review of N. A. Vasiliev’s paper “On particular judgments, the triangle of oppositions, and the Law of the Excluded Fourth” in Russian]. Logos, 2, 287–288.Google Scholar
  27. Jaśkowski, S. (1948). Rachunek zdah dla systemów dedukcyjnych sprezecznych [Un Calcul des Propositions pour les Systèmes Déductifs Contradictoires, in Polish]. Studia Societatis Scientiarum Torunesis, 1(5), sectio A. 55–77.Google Scholar
  28. Jaśkowski, S. (1999). A propositional calculus for inconsistent deductive systems. Logic and Logical Philosophy. Toruń, 7, 35–56.CrossRefGoogle Scholar
  29. Johansson, I. (1936). Der Minimalkalküll, ein reduzierter intuitionistischer Formalismus. Compositio Mathematica, 4, 119–136.Google Scholar
  30. Kagan, V. F. (1946–1951). N. I. Lobachevsky - Complete Colleted Works [in Russian]. Moscow, Leningrad, GITTL. 4 vols.Google Scholar
  31. Kolmogorov, A. N. (1925). On the principle of excluded middle. In J. Heijenoort (Ed.), From Frege to Gödel: A source book in mathematical logic 1879–1931 (pp. 414–437). Lincoln: toExcel, 1999.Google Scholar
  32. Lobachevsky, N. (1840). Geometrical researches on the theory of parallels. In R. Bonola (Ed.) (1955). Non-euclidean geometry. Translated into English by Carslaw, H. S. New York: Dover Publications.Google Scholar
  33. Łukasiewicz, J. (1910a). Über den Satz des Widerspruchs bei Aristoteles. Bulletin Internationale de l’Académia Sciences de Cracovie, Classe d’Histoire de Philosophie (pp. 15–38).Google Scholar
  34. Łukasiewicz, J. (1910b). O zasadzie sprezeczności u Aristotelesa: Studium Krytyczne, Krákow.Google Scholar
  35. Łukasiewicz, J. (1930). Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls. Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, Cl. iii, 23, pp. 51–77.Google Scholar
  36. Łukasiewicz, J. (1951). Aristotle’s syllogistic from the standpoint of modern formal logic. enlarged (2nd ed.). New York: Oxford University Press.Google Scholar
  37. Łukasiewicz, J. (1970). In L. Borkowski (Ed.), Selected works of Łukasiewicz. Amsterdam: North-Holland.Google Scholar
  38. Łukasiewicz, J. (1971). On the principle of contradiction in Aristotle. The Review of Metaphysics, 24(3), 485–509. Translated by Vernon Wedin.Google Scholar
  39. Łukasiewicz, J. (2003). Del Principio di Contraddizione in Aristotele. Traduzione dai polacco di Grazyna Maskowsia. Macerata: Quodlibet. (Quaderni Quodlibet, 14)Google Scholar
  40. Peirce, C. S. (1897). The logic of relatives. The Monist, 7(2), 161–217.CrossRefGoogle Scholar
  41. Priest, G., & Routley, R. (1989). First historical introduction: A preliminary history of paraconsistent and dialethic aproaches. In G. Priest, R. Routley, & J. Norman (Eds.), Paraconsistent logic: Essays on the inconsistent (pp. 3–75). München: Philosophia Verlag.Google Scholar
  42. Sautter, F. T. (2009). Silogísticas paraclássicas: um estudo de caso sobre a relação entre lógica clássica e lógicas não-clássicas [Paraclassical syllogistics: A case of study on the relation between classical logic and non-classical logics, in Portuguese]. Principia: Revista Internacional de Epistemologia. Florianópolis, SC, 13(2), 185–194.CrossRefGoogle Scholar
  43. Smirnov, K. A. (1911a). Retsenziia na sta’tiu N. A. Vasil’eva “O chastnykh suzhdeniiakh, o treugol’nike protivopolozhnostei, o zakone iskliuchennogo chetvertogo” [Review of N. A. Vasiliev’s paper “On particular judgments, the triangle of oppositions, and the Law of the Excluded Fourth” in Russian]. žurnal Ministérstva Narodnago Prosvěščéniá [The Journal of the Ministry of Educacion]. New series (Vol. XXXII, pp. 144–154). Sankt-Peterburg: Senatokaia tipografiia.Google Scholar
  44. Smirnov, K. A. (1911b). Vasil’ev i ego zakon iskliuchennogo chetvertogo [N. A. Vasil’ev and the Law of Excluded Fourth in Russian]. Sankt-Peterburg: Senatokaia tipografiia.Google Scholar
  45. Smirnov, V. A. (1962). Logičéskié vzglády N. A. Vasil’éva [The logical views of N. A. Vasil’iev in Russian]. In Očérki po istorii logiki v Rossii [Essays in the history of logic in Russian]. Izdatél’stvo Moskovskogo Univérsitéta, Moscow (pp. 242–257).Google Scholar
  46. Smirnov, V. A. (1989a). The logical ideas of N. A. Vasil’ev and modern logic. In J. E. Fenstad, I. T. Frolov, & R. Hilpinen (Eds.), Logic, methodology and philosophy of science, VII (Proceedings of the eight international congress of logic, methodology and philosophy of science, Moscow, 1987). Amsterdam/New York/Tokyo: North-Holland.Google Scholar
  47. Smirnov, V. A. (1989b). Logischeskie idei N. A. Vasil’eva i sovremennaia logika [The logical ideas of N. A. Vasil’ev and modern logic in Russian]. In Vasilev, N. A. (1989). V. A. Smirnov (Ed.), Voobrazhaemaia logika. Izbrannye trudy [Imaginary logic. Selected works in Russian] (pp. 229–259). Moskva: Nauka.Google Scholar
  48. Smirnov, V. A., & Stiazhkin, N. I. (1960). Vasil’ev, Nikolai Aleksandrovich. In Filosofskaia Entsiklopediia [Philosophical encyclopedia in Russian] (Vol. 1, pp. 228). Moskva: Sov. Entsiklopediia.Google Scholar
  49. Vasiliev, N. A. (1910). O cǎstnyh suždéniálh, o tréugol’niké protivopoložnostéj, o zakoné isklučēnnog čétvērtogo [On particular judgments, the triangle of oppositions and the law of excluded fourth, in Russian]. Učēnié zapiski Kanzan’skogo Universitéta (42p).Google Scholar
  50. Vasiliev, N. A. (1911). Voobražaémaá logika: konspékt lektsii [Imaginary logic (conspectos of a lecture), in Russian] (6p).Google Scholar
  51. Vasiliev, N. A. (1912). Voobražaémaá (néaristotéléva) logika. [Imaginary (non-Aristotellian) logic, in Russian] žurnal Ministérstva Narodnago Prosvěščéniá (Vol. 40, pp. 207–246).Google Scholar
  52. Vasiliev, N. A. (1913). Logika i métalogika. [Logic and metalogic, in Russian] Logos, 2/3, 53–58.Google Scholar
  53. Vasiliev, N. A. (1925). Imaginary (non-Aristotelian) logic. In Atti dei V Congresso Internazionale di Filosofia, Napoli (pp. 107–109).Google Scholar
  54. Vasilev, N. A. (1989). In V. A. Smirnov (Ed.), Voobrazhaemaia logika. Izbrannye trudy [Imaginary logic. Selected works in Russian]. Moskva: Nauka.Google Scholar
  55. Vasiliev, N. A. (1993). Logic and metalogic. Translated into English by Vladimir L. Vasyukov. Axiomathes, 4(3), 329–351.CrossRefGoogle Scholar
  56. Vasiliev, N. A. (2003). Imaginary (non-aristotelian) logic. Translated into English by R. Vergauwen and Evgeny A. Zaytsev. Logique & Analyse. Brussels, 46(182), 127–163.Google Scholar
  57. Vasiliev, N. A. (2012). Logica immaginaria. A cura di Venanzio Raspa e Gabriella Di Raino. Roma: Carocci. [Italian translation of Vasiliev 1910, 1911, 1912 and 1913].Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Philosophy, Institute of Philosophy and Human Sciences and Centre for Logic, Epistemology and the History of ScienceUniversity of CampinasCampinasBrazil
  2. 2.Department of Philosophy, Centre for Human Sciences, Letters and ArtsState University of MaringáMaringáBrazil

Personalised recommendations