Skip to main content

A Declarative Approach to Constrained Community Detection

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10416))

Abstract

Community detection in the presence of prior information or preferences on solution properties is called semi-supervised or constrained community detection. The task of embedding such existing kinds of knowledge effectively within a community discovery algorithm is challenging. Indeed existing approaches are not flexible enough to incorporate a variety of background information types. This paper provides a framework for semi-supervised community detection based on constraint programming modelling technology for simultaneously modelling different objective functions such as modularity and a comprehensive range of constraint types including community level, instance level, definition based and complex logic constraints. An advantage of the proposed framework is that, using appropriate solvers, optimality can be established for the solutions found. Experiments on real and benchmark data sets show strong performance and flexibility for our proposed framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that we also tried running MIP solvers on the models, but they were non-competitive, which is unsurprising since the linear relaxation of these problems is very weak.

References

  1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 US election: divided they blog. In: Proceedings of Link Discovery, pp. 36–43. ACM (2005)

    Google Scholar 

  2. Allahverdyan, A.E., Ver Steeg, G., Galstyan, A.: Community detection with and without prior information. Europhys. Lett. 90(1), 18002 (2010)

    Article  Google Scholar 

  3. Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S., Liberti, L.: Column generation algorithms for exact modularity maximization in networks. Phys. Rev. E 82(4), 046112 (2010)

    Article  Google Scholar 

  4. Babaki, B., Guns, T., Nijssen, S.: Constrained clustering using column generation. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 438–454. Springer, Cham (2014). doi:10.1007/978-3-319-07046-9_31

    Chapter  Google Scholar 

  5. Berg, J., Järvisalo, M.: Cost-optimal constrained correlation clustering via weighted partial maximum satisfiability. Artificial Intelligence (2015)

    Google Scholar 

  6. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. JSTAT 2008(10), P10008 (2008)

    Article  Google Scholar 

  7. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008)

    Article  MATH  Google Scholar 

  8. Cafieri, S., Caporossi, G., Hansen, P., Perron, S., Costa, A.: Finding communities in networks in the strong and almost-strong sense. Phys. Rev. E 85(4), 046113 (2012)

    Article  Google Scholar 

  9. Cafieri, S., Costa, A., Hansen, P.: Adding cohesion constraints to models for modularity maximization in networks. J. Complex Netw. 3(3), 388–410 (2015)

    Article  MathSciNet  Google Scholar 

  10. Choi, C.W., Lee, J.H.M., Stuckey, P.J.: Removing propagation redundant constraints in redundant modeling. ACM Trans. Comput. Log. 8(4), 23 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciglan, M., Nørvåg, K.: Fast detection of size-constrained communities in large networks. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010. LNCS, vol. 6488, pp. 91–104. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17616-6_10

    Chapter  Google Scholar 

  12. Davidson, I., Ravi, S.S., Shamis, L.: A SAT-based framework for efficient constrained clustering. In: SIAM Data Mining, pp. 94–105 (2010)

    Google Scholar 

  13. Dao, T.-B.-H., Duong, K.-C., Vrain, C.: A declarative framework for constrained clustering. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS, vol. 8190, pp. 419–434. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40994-3_27

    Chapter  Google Scholar 

  14. Duong, K.-C., Vrain, C., et al.: Constrained clustering by constraint programming. Artificial Intelligence (2015)

    Google Scholar 

  15. Eaton, E., Mansbach, R.: A spin-glass model for semi-supervised community detection. In: AAAI, Citeseer (2012)

    Google Scholar 

  16. Ganji, M., Seifi, A., Alizadeh, H., Bailey, J., Stuckey, P.J.: Generalized modularity for community detection. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS, vol. 9285, pp. 655–670. Springer, Cham (2015). doi:10.1007/978-3-319-23525-7_40

    Chapter  Google Scholar 

  17. Gil-Mendieta, J., Schmidt, S.: The political network in Mexico. Soc. Netw. 18(4), 355–381 (1996)

    Article  Google Scholar 

  18. Guns, T., Dries, A., Nijssen, S., Tack, G., De Raedt, L.: MiningZinc: a declarative framework for constraint-based mining. Artif. Intell. 244, 6–29 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, Y., Chen, H., Zhang, P., Li, M., Di, Z., Fan, Y.: Comparative definition of community and corresponding identifying algorithm. Phys. Rev. E 78(2), 026121 (2008)

    Article  Google Scholar 

  20. Jutla, I.S., Jeub, L.G.S., Much, P.J.: A generalized Louvain method for community detection implemented in MATLAB (2012). http://netwiki.amath.unc.edu/GenLouvain

  21. Krebs, V.: www.orgnet.com/

  22. Daz-Guilera, A., Danon, L., Arenas, A.: The effect of size heterogeneity on community identification in complex networks. JSTAT 2006, P11010 (2006)

    Article  Google Scholar 

  23. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Article  Google Scholar 

  24. Ma, X., Gao, L., Yong, X., Lidong, F.: Semi-supervised clustering algorithm for community structure detection in complex networks. Phys. A: Stat. Mech. Appl. 389(1), 187–197 (2010)

    Article  Google Scholar 

  25. Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS ONE 10(9), e0136497 (2015)

    Article  Google Scholar 

  26. Michael, J.H.: Labor dispute reconciliation in a forest products manufacturing facility. Forest Prod. J. 47(11/12), 41 (1997)

    Google Scholar 

  27. Negrevergne, B., Guns, T.: Constraint-based sequence mining using constraint programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 288–305. Springer, Cham (2015). doi:10.1007/978-3-319-18008-3_20

    Google Scholar 

  28. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7_38

    Chapter  Google Scholar 

  29. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    Article  MathSciNet  Google Scholar 

  30. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  31. OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar

  32. Pahwa, S., Hodges, A., Scoglio, C., Wood, S.: Topological analysis of the power grid and mitigation strategies against cascading failures. In: 2010 4th Annual IEEE on Systems Conference, pp. 272–276. IEEE (2010)

    Google Scholar 

  33. Puget, J.-F.: Symmetry breaking revisited. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 446–461. Springer, Heidelberg (2002). doi:10.1007/3-540-46135-3_30

    Chapter  Google Scholar 

  34. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Nat. Acad. Sci. 101(9), 2658–2663 (2004)

    Article  Google Scholar 

  35. Rossi, F., van Beek, P., Walsh, T.: Handbook of CP. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  36. Sampson, S.F.: A novitiate in a period of change: an experimental and case study of social relationships. Cornell University (1968)

    Google Scholar 

  37. Schulte, C., et al.: Gecode (2016). http://www.gecode.org/

  38. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)

    Article  Google Scholar 

  39. Zhang, Z.-Y.: Community structure detection in complex networks with partial background information. EPL (Europhys. Lett.) 101(4), 48005 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohadeseh Ganji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ganji, M., Bailey, J., Stuckey, P.J. (2017). A Declarative Approach to Constrained Community Detection. In: Beck, J. (eds) Principles and Practice of Constraint Programming. CP 2017. Lecture Notes in Computer Science(), vol 10416. Springer, Cham. https://doi.org/10.1007/978-3-319-66158-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66158-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66157-5

  • Online ISBN: 978-3-319-66158-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics