Skip to main content

Educational Models Based Upon Philosophy of Science

  • Chapter
  • First Online:
  • 641 Accesses

Part of the book series: Innovation and Change in Professional Education ((ICPE,volume 16))

Abstract

In this chapter we begin by covering some models of conceptual change that are based on philosophy of science. We then revisit the opposing view that the attitude of many students toward science is “knowledge in pieces.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this sense Tseitlin and Galili note that one may illustrate the pursuit to reveal the nature of science, “what science is,” as a subject of study, by reference to such philosophers of science as Koyré, Toulmin, Popper, Lakatos, Kuhn, and Feyerabend. This of course is exactly what is done in Kalman (2002, 10).

References

  • Bibler, V. (1999). Shkola Dialoga Kultur (pp. 12–14). Kemerovo: Aleph.

    Google Scholar 

  • Bunge, M. (1973). Philosophy of physics. Dordrecht: Reidel.

    Book  Google Scholar 

  • Carey, S. (1991). Knowledge acquisition: Enrichment or conceptual change? In S. Carey & R. Gelman (Eds.), The epigenesis of mind (pp. 257–291). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive models of science: Minnesota studies in the philosophy of science (pp. 129–186). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Chi, M. T. H. (2013). Two kinds and four sub-types of misconceived knowledge, ways to change it, and the learning outcomes. In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed., pp. 49–70). New York: Routledge Press.

    Google Scholar 

  • Chi, M. T. H., & Roscoe, R. D. (2002). The processes and challenges of conceptual change. In M. Limón & L. Mason (Eds.), Reconsidering conceptual change. Issues in theory and practice (pp. 3–27). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

    Article  Google Scholar 

  • Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27–43.

    Article  Google Scholar 

  • di Sessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10, 105–225.

    Article  Google Scholar 

  • di Sessa, A. A., & Sherin, B. (1998). What changes in conceptual change? International Journal of Science Education, 20(10), 1155–1191.

    Article  Google Scholar 

  • Dreyfus, A., Jungwirth, E., & Eliovitch, R. (1990). Applying the ‘cognitive conflict’ strategy for conceptual change – some implications, and problems. Science Education, 74(5), 555–569.

    Article  Google Scholar 

  • Duhem, P. (1906/1954). The aim and structure of physical theory. Princeton: Princeton University Press.

    Google Scholar 

  • Elby, A. (2001). Helping students learn how to learn. American Journal of Physics: Physics Educational Research Supplement, 69, S454–S464.

    Article  Google Scholar 

  • Feyerabend, P. K. (1993). Against method (3rd ed.). New York: Verso. Note that all information referred to in this book is also found in the first edition published in 1975.

    Google Scholar 

  • Galili, I., & Bar, V. (1992). Motion implies force. Where to expect vestiges of the misconception? International Journal of Science Education, 14(1), 63–81.

    Article  Google Scholar 

  • Galili, I., & Hazan, A. (2000). Learners’ knowledge in optics: Interpretation, structure, and analysis. International Journal of Science Education, 22(1), 57–88.

    Article  Google Scholar 

  • Halloun, I., & Hestenes, D. (1985a). The initial knowledge state of college physics students. American Journal of Physics, 53, 1043–1055.

    Article  Google Scholar 

  • Halloun, I., & Hestenes, D. (1985b). Common sense concepts about motion. American Journal of Physics, 53, 1056–1065.

    Article  Google Scholar 

  • Hammer, D. (1989). Two approaches to learning physics. The Physics Teacher, 27(9), 664–670.

    Article  Google Scholar 

  • Hammer, D. (1994). Epistemological beliefs in introductory physics. Cognition and Instruction, 12(2), 151–183.

    Article  Google Scholar 

  • Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30, 141–158.

    Article  Google Scholar 

  • Hewitt, P. (1995). Lessons from Lily on the introductory course. Physics Today, 48, 85–87.

    Article  Google Scholar 

  • Hewson, P., & Hewson, M. (1984). The role of conceptual conflict in conceptual change and the design of scientific instruction. Instructional Science, 13, 1–13.

    Article  Google Scholar 

  • Hewson, P. W., & Thorley, N. R. (1989). The conditions of conceptual change in the classroom. International Journal of Science Education, 11, 541–553.

    Article  Google Scholar 

  • Huffman, D., & Heller, P. (1995). What does the force concept inventory actually measure? The Physics Teacher, 33, 138–143.

    Article  Google Scholar 

  • Kalman, C. S. (2002). Developing critical thinking in undergraduate courses: A philosophical approach. Science & Education, 11, 83–94.

    Article  Google Scholar 

  • Kalman, C. S. (2009). A role for experiment in using the law of inertia to explain the nature of science: A comment on lopes Celho. Science & Education, 18, 25–31.

    Article  Google Scholar 

  • Kalman, C. S. (2010). Enabling students to develop a scientific mindset. Science & Education, 19(2), 147–163.

    Article  Google Scholar 

  • Kalman, C. S., & Rohar, S. (2010). Toolbox of activities to support students in a physics gateway course. Physical Review Special Topics – Physics Education Research, 6(2), 020111, 1–15. Retrieved from http://journals.aps.org/prper/abstract/10.1103/PhysRevSTPER.6.020111.

    Google Scholar 

  • Kalman, C. S., Morris, S., Cottin, C., & Gordon, R. (1999). Promoting conceptual change using collaborative groups. In ‘Quantitative Gateway Courses’. Physics Education Research Supplement: American Journal of Physics, 67, S45–S51.

    Google Scholar 

  • Kuhn, T. S. (1957). The Copernican revolution. New York: MJF Books.

    Google Scholar 

  • Kuhn, T. S. (1962, Second edition 1970). The structure of scientific revolutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Kuhn, T. S. (1992). The trouble with the historical philosophy of science, Robert and Maurine Rothschild Distinguished Lecture, 19 November 1991, An Occasional Publication of the Department of the History of Science. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lacan, J. (1973). Les quatre concepts fondamentaux de la psychanalyse. Le Seminaire de Jacques Lacan, 11, Seuil, Paris.

    Google Scholar 

  • Lakatos, I. (1970). Falsification and the methodology of scientific research programs. In I. Lakatos & A. Musgrove (Eds.), Criticism and the growth of knowledge (pp. 91–196). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. New York: Cambridge University Press.

    Book  Google Scholar 

  • Lattery, M. J. (2016). Deep learning in introductory physics: Exploratory studies of modeling-based reasoning. Charlotte: Information Age Publishing.

    Google Scholar 

  • Limon, M. (2001). On the cognitive conflict as instructional strategy for conceptual change: A critical appraisal. Learning and Instruction, 11, 357–380.

    Article  Google Scholar 

  • Lotman, Y., & Uspensky, B. A. (1978). On the semiotic mechanism of culture. New Literary History, 9, 211–232.

    Article  Google Scholar 

  • McCloskey, M. (1983). Naïve theories of motion. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 299–324). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • McDermott, L. C., & Redish, E. F. (1999). Resource letter PER-1: Physics education research. American Journal of Physics, 67, 755–767.

    Article  Google Scholar 

  • Minstrell, J. (1992). Facets of students’ knowledge and relevant instruction. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 110–128). Kiel: IPN.

    Google Scholar 

  • Nussbaum, J., & Novick, S. (1982). Alternative frameworks, conceptual conflict and accommodation: Toward a principled teaching strategy. Instructional Science, 11, 183–200.

    Article  Google Scholar 

  • Piaget, J. (1968). Le structuralisme. Paris: Presses Universitaires de France.

    Google Scholar 

  • Pintrich, P., Marx, R., & Boyle, R. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63, 167–199.

    Article  Google Scholar 

  • Posner, G., Strike, K., Hewson, P., & Gertzog, W. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211–227.

    Article  Google Scholar 

  • Reiner, M., Slotta, J. D., Chi, M. T. H., & Resnick, L. B. (2000). Naive physics reasoning: A commitment to substance based conceptions. Cognition and Instruction, 18, 1–34.

    Article  Google Scholar 

  • Slotta, J. D., & Chi, M. T. H. (1999). Overcoming robust misconceptions through ontological training. Paper presented at the Annual meeting of the American Educational Research Association, Montreal, Canada.

    Google Scholar 

  • Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology and educational theory and practice (pp. 147–176). Albany: State University of New York Press.

    Google Scholar 

  • Tao, P.-K., & Gunstone, D. (1997). The process of conceptual change in “force and motion”. Paper presented at the annual convention of the American Educational Research Association, Chicago, IL, USA.

    Google Scholar 

  • Tseitlin, M., & Galili, I. (2005). Physics teaching in the search for its self: From physics as a discipline to physics as a discipline-culture. Science & Education, 14, 235–261.

    Article  Google Scholar 

  • Viennot, I. (1979). Spontaneous reasoning in elementary dynamics. European Journal of Science Education, I, 205–221.

    Article  Google Scholar 

  • Vigotsky, L. (1994). Thought and language. Cambridge, MA: MIT.

    Google Scholar 

  • Vosniadou, S., & Verschaffel, L. (2004). Extending the conceptual change approach to mathematics learning and teaching. Learning and Instruction, 14(5), 445–451

    Google Scholar 

  • White, R. T., & Gunstone, R. F. (1989). Metalearning and conceptual change. International Journal of Science Education, 11, 577–586.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kalman, C.S. (2018). Educational Models Based Upon Philosophy of Science. In: Successful Science and Engineering Teaching. Innovation and Change in Professional Education, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-66140-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66140-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66139-1

  • Online ISBN: 978-3-319-66140-7

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics