Skip to main content

History of Potato Breeding: Improvement, Diversification, and Diversity

  • Chapter
  • First Online:
The Potato Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The potato is an important crop in the world economy and has received a lot of attention with regard to genetic improvement for different crop uses. Many varieties worldwide have been released for table purposes as well as for processing needs. The crop reproductive biology, its tetrasomic inheritance and asexual reproduction complicate the genetic enhancement and improvement of the crop. Many pests and diseases and changing market needs require more trait mining to search for donor lines to develop desirable plant types in the potato. The large species diversity and crop gene pool offer an advantage for the use of wild species in the crop improvement. Along with higher productivity, the focus nowadays is on improved nutritional quality characteristics. Potato varieties suited to sub-tropical and tropical climates with greater heat and drought tolerance are required. There is more and more demand for different type of potatoes suited to various needs of the consumers and markets. The recent genomics advances and availability of the potato genome sequence will provide new avenues to unravel and decipher the complex traits for enhanced productivity and improved quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn Y, Claussen K, Zimmerman JL (2004) Genotypic differences in the heat-shock response and thermotolerance in four potato cultivars. Plant Sci 166:901–911

    Article  CAS  Google Scholar 

  • Almekinders CJM, Chujoy E, Thiele G (2009) The use of true potato seed as pro-poor technology: the efforts of an international agricultural research institute to innovating potato production. Potato Res 52:275–293

    Article  Google Scholar 

  • Anithakumari AM, Tang J, Van Eck HJ, Visser RGF, Leunissen JA, Vosman B, Van der Linden CG (2010) A pipeline for high throughput detection and mapping of SNPs from EST databases. Mol Breed 26:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamberg JB, del Rio A (2005) Conservation of potato genetic resources. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops, volume I: Potato (p 476). Science Publishers, Inc. Plymouth

    Google Scholar 

  • Bhardwaj V, Kumar V, Kaushik SK, Minhas JS (2003) Genetic parameters for tuberization efficiency in potato under heat stress. J Indian Potato Assoc 30:5–6

    Google Scholar 

  • Bhardwaj V, Kaushik SK, Singh PH, Singh BP (2005) Tuber and foliage resistance to late blight in advanced potato hybrids. Potato J 32:131–132

    Google Scholar 

  • Bhardwaj V, Kaushik SK, Chakrabarti SK, Pandey SK, Singh PH, Manivel P, Singh BP (2007) Combining resistance to late blight and PVY in potato. Potato J 34(1–2):41–42

    Google Scholar 

  • Bhardwaj V, Manivel P, Gopal J (2011) Screening potato species for reducing sugars. Indian J Agric Sci 81(1):20–24

    Google Scholar 

  • Bhardwaj V, Sharma R, Dalamu, Srivastava AK, Baswaraj R, Singh R, Singh BP (2015) Molecular characterization of potato virus Y resistance in potato (Solanum tuberosum L.). Indian J Genet 75(3):389–392

    Google Scholar 

  • Bhaskar PB, Wu L, Busse JS, Whitty BR, Hamernik AJ, Jansky SH, Buell CR, Bethke PC, Jiang J (2010) Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiol 154:939–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1993) A test of the maximum heterozygosity hypothesis using molecular markers in tetraploid potatoes. Theor Appl Genet 86:481–491

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw JE, MacKay GR (1994) Breeding strategies for clonally propagated crops. In: Bradshaw JE, MacKay GR (eds) Potato genetics (pp 467–497). CAB International, Wallington, Oxon, UK

    Google Scholar 

  • Bradshaw JE, Hackett CA, Lowe R, McLean K, Stewart HE, Tierney I, Vilaro MDR, Bryan GJ (2006) Detection of a quantitative trait locus for both foliage and tuber resistance to late blight [Phytophthora infestans (Mont.) de Bary] on chromosome 4 of a dihaploid potato clone (Solanum tuberosum subsp. tuberosum). Theor Appl Genet 113:943–951

    Article  CAS  PubMed  Google Scholar 

  • Brown CR, Mojtahedi H, Santo GS (1991) Resistance to Columbia root-knot nematode in Solanum ssp. and in hybrids of S. hougasii with tetraploid cultivated potato. Am Potato J 68:445–452

    Article  Google Scholar 

  • Bukasov SM (1933) The potatoes of South America and their breeding possibilities. (According to data gathered by expeditions of the Institute of Plant Industry to Central and South America). Bull Appl Bot Suppl. 58, pp 1–192

    Google Scholar 

  • Buso JA, Boiteux LS, Peloquin SJ (1999) Evaluation under long-day conditions of 4x-2x progenies from crosses between potato cultivars and haploid Tuberosum-Solanum chacoense hybrids. Ann Rev Appl Biol 135:35–40

    Google Scholar 

  • Buso JA, Boiteux LS, Peloquin SJ (2003) Tuber yield and quality of 4x-2x (FDR) potato progenies derived from the wild diploid species Solanum berthaultii and Solanum tarijense. Plant Breed 122:229–232

    Google Scholar 

  • Capo A, Cammareri M, Rocca DF, Errico A, Zoina A, Conicella C (2002) Evaluation for chipping and tuber soft rot (Erwinia carotovora) resistance in potato clones from unilateral sexual polyploidization (2x × 4x). Am J Potato Res 79:139

    Article  Google Scholar 

  • Carputo D, Barone A (2005) Ploidy level manipulations in potato through sexual hybridisation. Ann Appl Biol 146:71

    Article  Google Scholar 

  • Carputo D, Barone A, Frusciante L (2000) 2n gametes in the potato: essential ingredients for breeding and germplasm transfer. Theor Appl Genet 101:805–813

    Article  Google Scholar 

  • Carroll CP (1982) A mass-selection method for the acclimatisation and improvement of edible diploid potatoes in the United Kingdom. J Agric Sci (Cambridge) 99:631–640

    Article  Google Scholar 

  • Carroll CP, De Maine MH (1989) The agronomic value of tetraploid F1 hybrids between potatoes of Group Tuberosum and Group Phureja/Stenotomum. Potato Res 32:447–456

    Article  Google Scholar 

  • Chakaborty S, Chakaborty N, Datta A (2000) Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc Natl Acad Sci USA 97:3724–3729

    Article  Google Scholar 

  • Chakrabarti SK, Singh BP, Thakur G, Tiwari JK, Kaushik SK, Sharma S, Bhardwaj V (2014) QTL mapping underlying resistance to late blight in a diploid potato family of Solanum spegazzinii × S.chacoense. Potato Res 57:1–11

    Article  Google Scholar 

  • Chani E, Veilleux RE, Boluarte-Medina T (2000) Improved androgenesis of interspecific potato and efficiency of SSR markers to identify homozygous regenerants. Plant Cell Tiss Organ Cult 60:101–112

    Article  CAS  Google Scholar 

  • Chen L, Guo X, Xie C, He L, Cai X, Tian L, Song B, Liu J (2013) Nuclear and cytoplasmic genome components of Solanum tuberosum + S. chacoense somatic hybrids and three SSR alleles related to bacterial wilt resistance. Theor Appl Genet 126:1861–1872

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Salamini F, Gebhardt C (2001) A potato molecular-function map for carbohydrate metabolism and transport. Theor Appl Genet 102:284–295

    Article  CAS  Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176

    Article  CAS  PubMed  Google Scholar 

  • Cockerham G (1943) Potato breeding for virus resistance. Ann Appl Biol 30:105–108

    Article  Google Scholar 

  • Cockerham G (1970) Genetical studies on resistance to potato viruses X and Y. Heredity 25:309–348

    Article  Google Scholar 

  • Cubillos AG, Plaisted RF (1976) Heterosis for yield in hybrids between S. tuberosum ssp. tuberosum and tuberosum ssp. andigena. Am Potato J 53:143

    Article  Google Scholar 

  • D’hoop BB, Paulo MJ, Kowitwanich K, Sengers M, Visser RGF, van Eck HJ, van Eeuwijk FA (2010) Population structure and linkage disequilibrium unraveled in tetraploid potato. Theor Appl Genet 121:1151–1170

    Google Scholar 

  • De Jong H, Rowe PR (1971) Inbreeding in cultivated diploid potatoes. Potato Res 14:74–83

    Article  Google Scholar 

  • Deblonde PMK, Ledent JF (2001) Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. Eur J Agron 14:31–41

    Article  Google Scholar 

  • DeMaine MJ (1984) Patterns of variation in potato dihaploid families. Potato Res 27:1–11

    Article  Google Scholar 

  • Dinu II, Hayes RJ, Kynast RG, Phillips RL, Thill CA (2005) Novel inter-series hybrids in Solanum, section Petota. Theor Appl Genet 110:403–415

    Article  CAS  PubMed  Google Scholar 

  • Domanski L, Zirnnoch-Guzowska E, Domanska M, Zgorska K, Paczowska M (2004) The germplasm release of M-62774 and M-62805, two potato clones with cold-sweetening resistance. Folia Hort 16:33–40

    Google Scholar 

  • Eiasu BK, Soundy P, Hammes PS (2007) Response of potato (Solanum tuberosum) tuber yield components to gelpolymer soil amendments and irrigation regimes. NZ J Crop Hort 35:25–31

    Article  Google Scholar 

  • Eijlander R, Ter Laak W, Hermsen JGT, Ramanna MS (2000) Occurrence of self-compatibility, self-incompatibility and unilateral incompatibility after crossing diploid S. tuberosum (SI) with S. verrucosum (SC): I. Expression and inheritance of self-compatibility. Euphytica 115:127–139

    Article  Google Scholar 

  • Engel FA (1970) Explorations of the Chilca Canyon, Peru. Curr Anthropol 11:55–58

    Article  Google Scholar 

  • FAO (2006) FAOSTAT database. http://faostat.fao.org/faostat/

  • FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture, Rome. http://www.fao.org/agriculture/crops/thematic-sitemap/theme/seeds-pgr/sow/en. Accessed 02 May 2017

  • Fock I, Collonnier C, Purwito A, Luisetti J, Souvannavong V, Vedel F, Servaes A, Ambroise A, Kodja H, Ducreux G et al (2000) Resistance to bacterial wilt in somatic hybrids between Solanum tuberosum and Solanum phureja. Plant Sci 160:165–176

    Article  CAS  PubMed  Google Scholar 

  • Fock I, Collonnier C, Luisetti J, Purwito A, Souvannavong V, Vedel F, Servaes A, Ambroise A, Kodja H, Ducreux G et al (2001) Use of Solanum stenotomum for introduction of resistance to bacterial wilt in somatic hybrids of potato. Plant Physiol Biochem 39:899–908

    Article  CAS  Google Scholar 

  • Frankel R, Galun E (1977) Pollination mechanisms, reproduction and plant breeding. Springer, New York

    Book  Google Scholar 

  • Fry W (2007) The canon of potato science: late blight and early blight. Potato Res 50:243–345

    Article  Google Scholar 

  • Gaur PC, Pandey SK (2000) Potato improvement in sub-tropics. In: Paul Khurana SM, Shekhawat GS, Singh BP, Pandey SK (eds) Potato, global research and development, vol 1, pp 52–63. Indian Potato Association, Shimla, India

    Google Scholar 

  • Gavrilenko T (2007) Potato cytogenetics. In: Vruegdenhil D (ed) Potato biology and biotechnology: advances and perspectives. Elsevier, Amsterdam, pp 203–216

    Chapter  Google Scholar 

  • Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P, Schüler K (2004) Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed 13:93–102

    Article  CAS  Google Scholar 

  • Gebhardt C, Menendez C, Chen X, Schafer-Pregl R, Salamini F (2005) Genomic approaches for the improvement of tuber quality traits in potato. Acta Hort 684:85

    Article  CAS  Google Scholar 

  • Goodrich CE (1863) The origination and test culture of seedling potatoes. Trans New York State Agric Soc 23:89–134

    Google Scholar 

  • Graham KM, Niederhauser JS, Romero S (1959) Observations on races of Phytophthora infestans in Mexico during 1956–1957. Am J Potato Res 36:196–203

    Article  Google Scholar 

  • Gregory LE (1965) Physiology of tuberization in plants. Encycl Plant Physiol 15:1328–1354

    Google Scholar 

  • Grun P (1990) The evolution of cultivated potatoes. In: Bretting PK (ed) New perspectives on the origin and evolution of new world domesticated plants. Econ Bot 3 (Suppl.) 44:39–55

    Google Scholar 

  • Hamalainen JH, Watanabe KN, Valkonen JPT, Arihara A, Plaisted RL, Pehu E, Miller L, Slack SA (1997) Mapping and marker assisted selection for a gene for extreme resistance to potato virus Y. Theor Appl Genet 94:192–197

    Article  CAS  Google Scholar 

  • Hamernik AJ, Hanneman REJ, Jansky S (2009) Introgression of wild species germplasm with extreme resistance to cold sweetening into the cultivated potato. Crop Sci 49:529–542

    Article  Google Scholar 

  • Hanneman Jr. RE, Peloquin SJ (1967) Crossability of 24 chromosome potato hybrids with 48 chromosome cultivars. Eur Potato J 10:62–73

    Google Scholar 

  • Haverkort AJ, Boonekamp PM, Hutten R, Jacobsen E, Lotz LAP, Kessel GJT, Vossen JH, Visser RGF (2016) Durable late blight resistance in Potato through dynamic varieties obtained by cisgenesis: scientific and societal advances in the DuRPh project. Potato Res 59:35–66

    Google Scholar 

  • Haverkort AJ, Struik PC, Visser RG, Jacobsen E (2009) Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res 52:249–264

    Google Scholar 

  • Hawkes JG (1956) Taxonomic studies on the tuber-bearing solanums. 1. Solanum tuberosum and the tetraploid species complex. Proc Linn Soc London 166:97–144

    Article  Google Scholar 

  • Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, London

    Google Scholar 

  • Hawkes JG (1994) Origins of cultivated potatoes and species relationships. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 3–42

    Google Scholar 

  • Hawkes JG, Francisco-Ortega (1992) The potato in Spain during the late 16th century. J Econ Bot 46:86

    Google Scholar 

  • Hayes RJ, Thill CA (2002a) Introgression of cold (4C) chipping from 2x (2 Endosperm Balance Number) potato species into 4x (4EBN) cultivated potato using sexual polyp loidization. Am J Potato Res 79:421–431

    Article  Google Scholar 

  • Hayes RJ, Thill CA (2002b) Selection for potato genotypes from diverse progenies that combine 4C chipping with acceptable yields, specific gravity, and tuber appearance. Crop Sci 42:1343–1349

    Article  Google Scholar 

  • Haynes KG, Christ BJ (1999) Heritability of resistance to foliar late blight in a diploid hybrid population of Solanum phureja - Solanum stenotomum. Plant Breed 118:431–434

    Article  Google Scholar 

  • Haynes KG, Lu W (2005) Improvement at the diploid species level. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops, vol I. Potato. Science Publishers Inc, Enfield, pp 101–114

    Google Scholar 

  • Hils U, Pieterse L (2005) World catalogue of potato varieties. Agrimedia GmbH, Bergen/Dumme, Germany

    Google Scholar 

  • Hosaka K (1995) Successive domestication and evolution of the Andean potatoes as revealed by chloroplast DNA restriction site analysis. Theor Appl Genet 90:356–363

    Google Scholar 

  • Hosaka K, Hanneman RE Jr (1998b) Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 2. Localization of an S locus inhibitor (Sli) gene on the potato genome using DNA markers. Euphytica 103:256–271

    Google Scholar 

  • Hosaka K, Hannernan RE Jr (1998a) Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. I. Detection of an S locus inhibitor (Sli) gene. Euphvtica 99:191–197

    Google Scholar 

  • Hosaka K, de Zoeten GA, Hanneman RE Jr (1988) Cultivated potato chloroplast DNA differs from the wild type by one deletion—evidence and implications. Theor Appl Genet 75(5):741–745

    Article  CAS  Google Scholar 

  • Hosaka K, Hosaka Y, Mori M, Maida T, Matsunaga H (2001) Detection of a simplex RAPD marker linked to resistance to potato virus Y in a tetraploid potato. Am J Potato Res 78:191–196

    Article  CAS  Google Scholar 

  • Hougas RW, Peloquin SJ (1957) A haploid plant of the potato variety Katahdin. Nature 180:1209–1210

    Article  Google Scholar 

  • Huamán Z, Spooner DM (2002) Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). Am J Bot 89:947–965

    Article  PubMed  Google Scholar 

  • Hutten R (1994) Basic aspects of potato breeding via the diploid level. Ph.D. thesis, Wageningen University, Wageningen

    Google Scholar 

  • Hyman G, Fujisaka S, Jones P, Wood S, de Vicente MC, Dixon J (2008) Strategic approaches to targeting technology generation: assessing the coincidence of poverty and drought-prone crop production. Agric Syst 98:50–61

    Article  Google Scholar 

  • Iwama K, Yamaguchi Y (2006) Abiotic stresses. In: Gopal J, Paul Khurana SM (eds) Handbook of potato production improvement and post harvest management. Food Product Press, New York, pp 231–278

    Google Scholar 

  • Iwanaga M, Ortiz R, Cipar MS, Peloquin SJ (1991) A restorer gene for genetic-cytoplasmic male sterility in cultivated potatoes. Am Potato J 68:19–28

    Article  Google Scholar 

  • Jackson SA, Hanneman RE Jr (1999) Crossability between cultivated and wild tuber-and non-tuber-bearing Solanums. Euphytica 109(1):51–67

    Article  Google Scholar 

  • Jansen G, Flamine W, Schuler K, Vandrey M (2001) Tuber and starch quality of wild and cultivated potato species and cultivars. Potato Res 44:137–146

    Article  CAS  Google Scholar 

  • Jansky S (2006) Overcoming hybridization barriers in potato. Plant Breed 125:1–12

    Article  Google Scholar 

  • Jansky SH, Simon R, Spooner DM (2009) A test of taxonomic predictivity: resistance to the colorado potato beetle in wild relatives of cultivated potato. J Econ Entomol 102:422–431

    Article  CAS  PubMed  Google Scholar 

  • Jansky SH, Charkowski AO, Douches DS, Gusmini G, Richael C, Bethke PC, Spooner DM, Novy RG et al (2016) Reinventing potato as a diploid inbred line-based crop. Crop Sci 56:1–11

    Article  CAS  Google Scholar 

  • Jeffery RA (1995) Physiology of crop response to drought. In: Haverkortand AJ, MacKerron DKL (eds) Potato ecology and modeling of crops under conditions limiting growth. Wageningen Academic Publishers, The Netherlands, pp 61–74

    Chapter  Google Scholar 

  • Jeffries C, Barker H, Khurana SMP (2006) Viruses & viroids. In: Gopal J, Khurana SMP (eds) Handbook of potato production, improvement and post harvest management. The Howarth Press Inc, USA, pp 387–448

    Google Scholar 

  • Jin LP, Qu DY, Xie KY, Bian CS, Duan SG (2004) Potato germplasm, breeding studies in China. In: Proceedings of the Fifth world potato congress, Kunming, China, 26–31st March 2004, pp 175–177

    Google Scholar 

  • Johnston SA, Hanneman RE (1980) Support of the endosperm balance number hypothesis utilizing some tuber-bearing Solanum species. Am Potato J 57:7–14

    Article  Google Scholar 

  • Johnston SA, den Nijs TPM, Peloquin SJ, Hanneman RE (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet 57:5–9

    Article  CAS  PubMed  Google Scholar 

  • Joseph TA, Kaushik SK, Singh BP, Bhardwaj V, Singh PH, Pandey SK, Paul Khurana SM, Gopal J (2006) Kufri Shailja: a late blight resistant potato variety for Indian hills. Potato J 33:99–103

    Google Scholar 

  • Joseph TA, Kaushik SK, Singh BP, Bhardwaj V, Pandey SK, Singh SV, Singh PH, Gupta VK (2007) Kufri Himalini: a high yielding, late blight resistant potato variety suitable for cultivation in Indian hills. Potato J 34:168–173

    Google Scholar 

  • Joseph TA, Singh BP, Kaushik SK, Bhardwaj V, Pandey SK, Singh PH, Singh SV, Gopal J, Bhat MN, Gupta VK (2011) Kufri Girdhari: a medium maturing, late blight resistant potato variety for cultivation in Indian hills. Potato J 38:26–31

    Google Scholar 

  • Jupe F, Pritchard L, Etherington GJ, MacKenzie K, Cock PJA, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JDG, Hein I (2012) Identification and localization of the NB-LRR gene family within the potato genome. BMC Genomics 13

    Google Scholar 

  • Juzepczuk SW, Bukasov SM (1929) A contribution to the question of the origin of the potato. Trudy Vsesoyuznogo S”zeda po Genetike i Selektsii Semenovodstvu i Plemennomu Zhivotnovodstvu. Leningrad 3:593–611

    Google Scholar 

  • Kasai K, Morikawa Y, Sorri VA, Valkonen JPT, Gebhardt C, Watanabe KN (2000) Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome 43:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kaushik SK, Sharma R, Garg ID, Singh BP, Chakrabarti SK, Bhardwaj V, Pandey SK (2013) Development of triplex (YYYy) potato parental line having extreme resistance to PVY using Marker Assisted Selection (MAS). J Hort Sci Biotechnol 88(5):580–584

    Google Scholar 

  • Kawchuk LM, Lynch DR, Yada RY, Bizimungu B, Lynn J (2008) Marker assisted selection of potato clones that process with light chip color. Am J Potato Res 85:227–231

    Article  CAS  Google Scholar 

  • Khurana SMP (2008) Potato viruses. In: Rao GP et al (eds) Characterization, diagnosis and management of plant viruses, vol I. Industrial crops. Studium Press LLC, Texas, pp 1–45

    Google Scholar 

  • Kim HJ, Lee HR, Jo KR, Mortazavian SM, Huigen DJ, Evenhuis B, Kessel G, Visser RG, Jacobsen E, Vossen JH (2012) Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. Theor Appl Genet 124:923–935

    Google Scholar 

  • Kim-Lee H, Moon JS, Hong YJ, Kim MS, Cho HM (2005) Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. Am J Potato Res 82:129–137

    Article  Google Scholar 

  • Kloosterman B, Abelenda JA, Gomez MDMC, Oortwijn M, de Boer JM, Kowitwanich K, Horvath BM, van Eck HJ, Smaczniak C, Prat S, Visser RGF, Bachem CWB (2013) Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495:246–250

    Article  CAS  PubMed  Google Scholar 

  • Knight TA (1807) On raising of new and early varieties of the potato (Solanum tuberosum). Trans Hort Soc London 1:57–59

    Google Scholar 

  • Kotch GP, Peloquin SJ (1987) A new source of haploid germplasm for genetic and breeding research. Am Potato J 64:137–141

    Article  Google Scholar 

  • Kotch GP, Ortiz R, Peloquin SJ (1992) Genetic analysis by use of potato haploid populations. Genome 35:103–108

    Article  Google Scholar 

  • Kumar D, Singh BP, Kumar P (2004) An overview of the factors affecting sugar content of potatoes. Ann Appl Biol 145:247–256

    Article  Google Scholar 

  • Kumar S, Asrey R, Mandal G (2007) Effect of differential irrigation regimes on potato (Solanum tuberosum) yield and post-harvest attributes. Indian J Agric Sci 77:366–368

    Google Scholar 

  • Kumar S, Garrick DJ, Bink MCAM, Whitworth C, Chagné D, Volz RK (2013) Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genom 14:393

    Article  CAS  Google Scholar 

  • Laferriere LT, Helgeson JP, Allen C (1999) Fertile Solanum tuberosum + S. commersonii somatic hybrids as sources of resistance to bacterial wilt caused by Ralstonia solanacearum. Theor Appl Genet 98:1272–1278

    Article  Google Scholar 

  • Landeo JA (2002) Durable resistance: quantitative/qualitative resistance. In: C. Lizarraga (ed) Proceedings of global initiative on late blight conference 11–13th July 2002. Hamburg, Germany, pp 29–36

    Google Scholar 

  • Levy D, Veilleux RE (2007) Adaptation of potato to high temperatures and salinity: a review. Am J Potato Res 84:487–506

    Article  Google Scholar 

  • Levy D, Itzhak Y, Fogelman E, Margalit E, Veilleux RE (2001) Ori, Idit, Zohar and Zahov: tablestock and chipstock cultivars bred for adaptation to Israel. Am J Potato Res 78:167–173

    Article  CAS  Google Scholar 

  • Li L, Strahwald J, Hofferhert HR, Lubeck J, Tacke F, Junghans H, Wunder J, Gebhardt C (2005) DNA variation at the invertase focus invGE/GF is associated with tuber quality traits in populations of potato breeding clones. Genetics 170:813–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Waddington SR, Dixon J, Joshi AK, de Vicente MC (2011) The relative importance of drought and other water-related constraints for major food crops in South Asian farming systems. Food Secur 3:19–33

    Article  Google Scholar 

  • Lindhout P, Meijer D, Schotte T, Hutten RCB, Visser RGF, Eck HJ (2011) Towards F1 hybrid seed potato breeding. Potato Res 54:301–312

    Article  Google Scholar 

  • Lloyd JR, Springer F, Buleon A, Müller-Röber B, Willmitzer L, Kossmann J (1999) The influence of alterations in ADP-glucose pyrophosphorylase activities on starch structure and composition in potato tubers. Planta 209:230–238

    Article  CAS  PubMed  Google Scholar 

  • Love SL, Pavek JJ, Thompson-Johns A, Bohl W (1998) Breeding progress for potato chip quality in North American cultivars. Ame J Potato Res 75:27–36

    Article  Google Scholar 

  • Machida-Hirano R (2015) Diversity of potato genetic resources. Breed Sci 65:26–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Maris B (1989) Analysis of an incomplete diallel cross among three ssp. tuberosum varieties and seven long-day adapted ssp. andigena clones of the potato (Solanum tuberosum L.). Euphytica 41:163–182

    Article  Google Scholar 

  • Martínez CA, Moreno U (1992) Expresiones fisiológicas de resistencia a sequía en dos variedades de papa sometidas a estrés hídrico. Rev Bras Fisiol Veg 4:33–38

    Google Scholar 

  • Matsuura-Endo C, Ohara-Takada A, Chuda Y, Ono H, Yada H, Yoshida M, Kobayashi A, Tsuda S, Takigawa S, Noda T, Yamauchi H, Mori M (2006) Effects of storage temperature on the contents of sugars and free amino acids in tubers from different potato cultivars and acrylamide in chips. Biosci Biotechnol Biochem 70:1173–1180

    Article  CAS  PubMed  Google Scholar 

  • McKenzie MJ, Sowokinos JR, Shea IM, Gupta SK, Lindlauf RR, Anderson JAD (2005) Investigations on the role of acid invertase and UDP-glucose phyrophosphorylase in potato clones with varying resistance to cold-induced sweetening. Am J Potato Res 82:231–239

    Article  CAS  Google Scholar 

  • Meena RS, Manivel P, Bhardwaj V, Gopal J (2009) Screening potato wild species for low accumulation of reducing sugars during cold storage. Electr J Plant Breed 1:89–92

    Google Scholar 

  • Mendibuni AO, Peloquin SJ (1977) Bilateral sexual polyploidization in potatoes. Euphvtica 26:573–583

    Article  Google Scholar 

  • Minhas JS, Rawat S, Govindakrishnan PM, Kumar D (2011) Possibilities in enhancing potato production in non-traditional areas. Potato J 38(1):14–17

    Google Scholar 

  • Monneveux P, Ramírez DA, Pino MT (2013) Drought tolerance in potato (S. tuberosum L.): can we learn from drought tolerance research in cereals? Plant Sci 205–206:76–86

    Article  PubMed  CAS  Google Scholar 

  • Monneveux P, Ramírez DA, Khan MA, Raymundo RM, Loayza H, Quiroz R (2014) Drought and heat tolerance evaluation in potato (Solanum tuberosum L.). Potato Res 57(4):225–247

    Article  Google Scholar 

  • Mulema JMK, Olanya OM, Adipala E, Wagoire W (2004) Stability of late blight resistance in population B potato clones. Potato Res 47:11–24

    Article  Google Scholar 

  • Murphy AM, De Jong H, Tai GCC (1995) Transmission of resistance to common scab from the diploid to the tetraploid level via 4x-2x crosses in potatoes 82:227–233

    Google Scholar 

  • Ochoa CM (1999) Las papas de sudamerica: Peru (Parte I). International Potato Center, Lima, p 1036

    Google Scholar 

  • Ortiz R (2001) The state of the use of potato genetic diversity. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CABI Publishing, Wallingford, pp 181–200

    Chapter  Google Scholar 

  • Ovchinnikova A, Krylova E, Gavrilenko T, Smekalova T, Zhuk M, Knapp S, Spooner DM (2011) Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae). Bot J Linn Soc 165:107–155

    Article  Google Scholar 

  • PBI Solanum Project (2014) Solanaceae Source. http://www.solanaceaesource.org. Accessed 1 May 2017

  • Pehu E, Gibson RW, Jones MGK, Karp A (1990) Studies on the genetic basis of resistance to potato leaf roll virus, potato virus Y and potato virus X in Solanum brevidens using somatic hybrids of Solanum brevidens and Solanum tuberosum. Plant Sci 69:95–101

    Article  Google Scholar 

  • Peloquin SJ, Hougas RW (1960) Genetic variation among haploids of the common potato. Am Potato J 37:289–297

    Article  Google Scholar 

  • Peloquin SJ, Boiteux LS, Carputo D (1999) Meiotic mutants in potato: valuable variants. Genetics 153:1493–1499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phumichai C, Hosaka K (2006) Cryptic improvement for fertility by continuous selfing of diploid potatoes using Sli gene. Euphytica 149:251–258

    Article  CAS  Google Scholar 

  • Phumichai C, Mori M, Kobayashi A, Kamijima O, Hosaka K (2005) Toward the development of highly homozygous diploid potato lines using the self-compatibility controlling Sb gene. Genome 48:977–984

    Article  CAS  PubMed  Google Scholar 

  • Phumichai C, Ikeguchi-Samitsu Y, Fujmatsu M, Kitanishi S, Kobayashi A, Mori M, Kosaka K (2006) Expression of S-locus inhibitor gene (Sli) in various diploid potatoes. Euphytica 148:227–234

    Article  CAS  Google Scholar 

  • Plaisted RL, Hoopes RW (1989) The past record and future prospects for the use of exotic potato germplasm. Am Potato J 66:603–627

    Article  Google Scholar 

  • Raimondi JP, Camadro EL (2003) Crossability relationships between the common potato, Solanum tuberosum spp. tuberosum, and its wild diploid relatives S. kurtzianum and S. ruiz-lealii. Genetic Resour Crop Evol 50:307–314

    Article  CAS  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Procd Natl Acad Sci USA 98:11479–11484

    Article  CAS  Google Scholar 

  • Rickert AM, Kim JH, Meyer S, Nagel A, Ballvora A, Oefner PJ, Gebhardt C (2003) First generation SNP/InDel markers tagging loci for pathogen resistance in the potato genome. Plant Biotechnol J 1:399–410

    Article  CAS  PubMed  Google Scholar 

  • Ross H (1986) Potato breeding—problems and perspectives. Verlag Paul Parey, Berlin, Hamberg

    Google Scholar 

  • Salaman RN (1946) The early European potato; its character and place of origin. J Linn Soc (Bot) 53:1–27

    Article  Google Scholar 

  • Salaman R (1954) The origin of the early European potato. J Linn Soc London Bot 55:185–190

    Article  Google Scholar 

  • Schafleitner R (2009) Growing more potatoes with less water. Trop Plant Biol 2:111–121

    Article  CAS  Google Scholar 

  • Schafleitner R, Gutierrez R, Espino R, Gaudin A, Pérez J, Martínez M, Domínguez A, Tincopa L, Alvarado C, Numberto G, Bonierbale M (2007) Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis. Potato Res 50:71–85

    Article  CAS  Google Scholar 

  • Schwall GP, Safford R, Westcott RJ, Jeffcoat R, Tayal A, Shi Y-C, Gidley MJ, Jobling SA (2000) Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat Biotechnol 18:551–554

    Article  CAS  PubMed  Google Scholar 

  • Scott GJ, Rosegrant MW, Ringler C (2000) Global projections for root and tuber crops to the year 2020. Food Policy 25:561–597

    Article  Google Scholar 

  • Shekhawat GS, Khurana SMP, Singh BP (2000) Important diseases of potato and their management. In: Khurana SMP, Shekhawat GS, Singh BP, Pandey SK (eds) Potato global research and development, vol 1. Indian Potato Association, Shimla, pp 281–303

    Google Scholar 

  • Simko I, Haynes KG, Jones RW (2006) Assessment of linkage disequilibrium in potato genome with single nucleotide polymorphism markers. Genetics 173:2237–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmonds NW (1969) Prospects of potato improvement. Scott Plant Breed Stat Ann Rep 48:18–38

    Google Scholar 

  • Slater JW (1968) The effect of night temperature on tuber initiation of the potato. Eur Potato J 11:14–22

    Article  Google Scholar 

  • Sowokinos JR (2001) Allele and isozyme patterns of UDP-glucose pyrophosphorylase as a marker for cold sweetening resistance in potatoes. Am J Potato Res 78:57–64

    Article  CAS  Google Scholar 

  • Sowokinos JR, Thomas C, Burrell MM (1997) Pyrophosphorylases in Potato. V. Allelic polymorphism of UDP-glucose pyrphosphorylase in potato cultivars and its association with tuber resistance to sweetening in the cold. Plant Physiol 113:511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spooner DM (2009) DNA barcoding will frequently fail in complicated groups: an example in wild potatoes. Am J Bot 96:1177–1189

    Article  CAS  PubMed  Google Scholar 

  • Spooner DM, Bamberg JB (1994) Potato genetic resources: sources of resistance and systematics. Am Potato J 71:325–337

    Article  Google Scholar 

  • Spooner DM, Hijmans RJ (2001) Potato systematics and germplasm collecting, 1989-2000. Am J Potato Res 78:237–268

    Article  Google Scholar 

  • Spooner DM, McLean K, Ramsay G, Waugh R, Bryan G (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Procd Natl Acad Sci USA 102:14694–14699

    Article  CAS  Google Scholar 

  • Spooner DM, Núñez J, Trujillo G, Del Rosario Herrera M, Guzmán F, Ghislain M (2007) Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proc Natl Acad Sci USA 104:19398–19403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spooner DM, Ghislain M, Simon R, Jansky SH, Gavrilenko T (2014) Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev 80:283–383

    Article  Google Scholar 

  • Sterrett SB, Henninger MR, Yencho GC, Lu W, Vinyard BT, Haynes KG (2003) Stability of internal heat necrosis and specific gravity in tetraploid × diploid potatoes. Crop Sci 43:790–796

    Article  Google Scholar 

  • Stich B, Urbany C, Hoffmann P, Gebhardt C (2013) Population structure and linkage disequilibrium in diploid and tetraploid potato revealed by genome-wide high-density genotyping using the SolCAP SNP array. Plant Breed 132:718–724

    Article  CAS  Google Scholar 

  • Struik PC, Wiersema SG (1999) Seed potato technology. Wageningen Press, Wageningen, p 383

    Google Scholar 

  • Sudha R, Venkatasalam EP, Bairwa A, Bhardwaj V, Dalamu Sharma R (2016) Identification of potato cyst nematode resistant genotypes using molecular markers. Scientia Hort 198:21–26

    Article  CAS  Google Scholar 

  • Swaminathan MS, Howard HW (1953) The cytology and genetics of the potato (Solanum tuberosum) and related species. Bibliographia Genetica 16:1–192

    Google Scholar 

  • Szajko K, Strzelczyk-Żyta D, Marczewski W (2014) Ny-1 and Ny-2 genes conferring hypersensitive response to potato virus Y (PVY) in cultivated potatoes: mapping and marker-assisted selection validation for PVY resistance in potato breeding. Mol Breed 34:267–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai GCC (1994) Use of 2n gametes. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 109–132

    Google Scholar 

  • Tai GCC, De Jong H (1980) Multivariate analyses of potato hybrids. 1. Discrimination between tetraploid-diploid hybrid families and their relationship to cultivars. Can J Genet Cytol 22:227–235

    Article  Google Scholar 

  • Tai UCC, De Jong H (1997) A comparison of performance of tetraploid progenies produced by diploid and their vegetatively doubled (tetraploid) couterpart parents. Theor Appl Genet 94:303–308

    Article  Google Scholar 

  • Tan MYA, Hutten RCB, Visser RGF, van Eck HJ (2010) The effect of pyramiding Phytophthora infestans resistance genes Rpimcd1 and Rpi-ber in potato. Theor Appl Genet 121:117–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD, Loaiza-Figueroa F (1985) Gametophytic self-incompatibility is controlled by a single major locus on chromosome 1 in Lycopersicon peruvianum. Procd Natl Acad Sci USA 82:5093–5096

    Article  CAS  Google Scholar 

  • Tarn TR, Tai GCC (1983) Tuberosum-tuberosum and tuberosum-andigena potato hybrids: comparisons of families and parents, and breeding strategies for andigena potatoes in long-day temperate environments. Theor Appl Genet 66:87–91

    Article  CAS  PubMed  Google Scholar 

  • Tarn TR, Tai GCC, De Jong H, Murphy AM, Seabrook JEA (1992) Breeding potatoes for long day temperate climates. Plant Breed Rev 9:217–332

    Google Scholar 

  • The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–197

    Article  CAS  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  CAS  Google Scholar 

  • Thiele G, Theisen K, Bonierbale M, Walker T (2010) Targeting the poor and hungry with potato science. Potato J 37:75–86

    Google Scholar 

  • Thill CA, Peloquin SJ (1994) Inheritance of potato chip color at the 24-chromosome level. Am Potato J 71:629–646

    Article  Google Scholar 

  • Trognitz BR, Bonierbale M, Landeo JA, Forbes G, Bradshaw JE, Mackay GR, Waugh R, Huarte MA, Colon L (2001) Improving potato resistance to disease under the global initiative on late blight. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CABI Publishing, Wallingford, pp 385–398

    Chapter  Google Scholar 

  • Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3(347):1–26

    Google Scholar 

  • Ugent D, Dillehay T, Ramirez C (1987) Potato remains from a late Pleistocene settlement in Southcentral Chile. Econ Bot 41:17–27

    Article  Google Scholar 

  • Uidewilligen JG, Wolters AMA, Bjorn B, Borm TJ, Visser RG, van Eck HJ (2013) A next generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One 8(5):e62355

    Article  CAS  Google Scholar 

  • Uijtewaal BA, Huigen DJ, Hermsen JGT (1987) Production of potato monohaploids (2n = x = 12) through prickle pollination. Theor Appl Genet 73:751–758

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg RG, Miller JT, Ugarte ML, Kardolus JP, Villand J, Nienhuis J, Spooner DM (1998) Collapse of morphological species in the wild potato Solanum brevicaule complex (sect. Petota). Am J Bot 85:92–109

    Article  Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chron. Bot. 13:1–366. [Originally published in 1935; transl. from Russian by K. S. Chester.]

    Google Scholar 

  • Vleeshouwers VGAA, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A, Kessel G, Pel MA, Kamoun S (2011) Ann Rev Phytopathol 49:507–531

    Article  CAS  Google Scholar 

  • Wang F, Li F, Wang J, Zhou Y, Sun H (2011) Genetic diversity of the selected 64 potato germplasms revealed by AFLP markers. Mol Plant Breed 2:22–29

    CAS  Google Scholar 

  • Watanabe KN, Kikuchi A, Shimazaki T, Asahina M (2011) Salt and drought stress tolerances in transgenic potatoes and wild species. Potato Res 54:319–324

    Article  CAS  Google Scholar 

  • Werner JE, Peloquin SJ (1991) Occurrence and mechanisms of 2n egg formation in 2x potato. Genome 4:975–982

    Article  Google Scholar 

  • Zhu S, Li Y, Vossen JH, Visser RG, Jacobsen E (2012) Functional stacking of three resistance genes against Phytophthorainfestans in potato. Transgenic Res 21:89–99

    Article  CAS  PubMed  Google Scholar 

  • Zitnak A, Johnston G (1970) Glycoalkaloid content of B5141-6 potatoes. Am Potato J 47:256–260

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinay Bhardwaj or S. K. Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sood, S., Bhardwaj, V., Pandey, S.K., Chakrabarti, S.K. (2017). History of Potato Breeding: Improvement, Diversification, and Diversity. In: Kumar Chakrabarti, S., Xie, C., Kumar Tiwari, J. (eds) The Potato Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-66135-3_3

Download citation

Publish with us

Policies and ethics