Skip to main content

Classical Genetics and Gene Mapping

  • Chapter
  • First Online:
The Chickpea Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The search for the genetic factor associated with many important traits in chickpea has been focused on two major techniques, linkage (and QTL) mapping and candidate gene approach. Linkage mapping is the process of systematically scanning the plant genome of both intraspecific (within a species) and interspecific (across different species) populations segregating for the trait of interest using variable also known as polymorphic DNA segments or single nucleotide whose position on the genome is known, as such they are collectively called as genetic markers. Using those populations, researchers can identify genetic regions associated with or linked to the trait by observing that the affected lines share certain marker variants (i.e., alleles) located in those regions more frequently than would be expected by random chance. These regions were then often being isolated for further analysis and characterization of the responsible genes. Linkage mapping techniques have already resulted in the identification of several potential DNA regions that may contain important genes for plant and seed morphology, flower and seed color, disease resistance, and other important traits in chickpeas such as double podding, nodulation, and resistance to herbicide. The primary advantage of linkage mapping is that researchers do not need prior knowledge of the physiology underlying the traits. The candidate gene analysis will then enable the researchers to examine the validity of the genetic basis of the traits. This chapter discusses examples of linkage and gene mapping in chickpea and some potential candidate genes underlying the traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbo S, Molina C, Jungmann R, Grusak MA, Berkovitch Z, Reifen R, Reifen R, Kahl G, Winter P (2005) Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theor Appl Genet 111:185–195

    Article  CAS  PubMed  Google Scholar 

  • Ahmad N (1964) Inheritance of pod characters in Cicer species and its economic importance. West Pakist J Agric Res 2:58–61

    Google Scholar 

  • Ali L, Azam S, Rubio J, Kudapa H, Madrid E, Varshney RK, Castro P, Chen W, Gil J, Millan T (2015) Detection of a new QTL/gene for growth habit in chickpea CaLG1 using wide and narrow crosses. Euphytica 204(2):473–485

    Article  CAS  Google Scholar 

  • Ali LE, Madrid E, Varshney RK, Azam S, Millan T, Rubio J, Gil J (2014) Mapping and identification of a Cicer arietinum NSP2 gene involved in nodulation pathway. Theor Appl Genet 127:481–488

    Article  CAS  PubMed  Google Scholar 

  • Argikar GP (1956) Some qualitative and quantitative observation on the genetic improvement of green seeded strains of Cicer arietinum. Indian J Genet 16:52–56

    Google Scholar 

  • Aryamanesh N, Nelson MN, Yan G, Clarke HJ, Siddique KHM (2010) Mapping a major gene for growth habit and QTLs for Ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum. Euphytica 173:307–319

    Article  Google Scholar 

  • Atanasova D, Mihov M (2006) Inheritance of flower color and leaf shape of chickpea (Cicer arietinum L.). Bulg J Agric Sci 12:521–524

    Google Scholar 

  • Banerjee H, Pai RA, Moss JP, Sharma RP (2001) Use of random amplified polymorphic DNA markers for mapping the Chickpea genome. Biologia Plantarum 44:195–202

    Article  CAS  Google Scholar 

  • Benko-Iseppon A-M, Winter P, Huettel B, Staginnus C, Muehlbauer FJ, Kahl G (2003) Molecular markers closely linked to fusarium resistance genes in chickpea show significant alignments to pathogenesis-related genes located on Arabidopsis chromosomes 1 and 5. Theor Appl Genet 107:379–386

    Article  CAS  PubMed  Google Scholar 

  • Cho S, Kumar J, Shultz JL, Anupama K, Tefera F, Muehlbauer FJ (2002) Mapping genes for double podding and other morphological traits in chickpea. Euphytica 128:285–292

    Article  CAS  Google Scholar 

  • Choudhary S, Gaur R, Gupta S, Bhatia S (2012) EST-derived genic molecular markers: development and utilization for generating an advanced transcript map of chickpea. Theor Appl Genet 124:1449–1462

    Article  CAS  PubMed  Google Scholar 

  • Cobos MJ, Fernandez M, Rubio J, Kharrat M, Moreno MT, Gil J, Millan T (2005) A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli × Desi crosses: location of genes for resistance to fusarium wilt race 0. Theor Appl Genet 110:1347–1353

    Article  CAS  PubMed  Google Scholar 

  • Cobos MJ, Rubio J, Fernandez-Romero MD, Garza R, Moreno MT, Millan T, Gil J (2007) Genetic analysis of seed size, yield and days to flowering in a chickpea recombinent inbred line population derived from a kabuli × desi cross. Ann Appl Biol 151:33–42

    Article  CAS  Google Scholar 

  • Cobos MJ, Winter P, Kharrat M, Cubero JI, Gil J, Millan T, Rubio J (2009) Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crops Res 111:130–136

    Article  Google Scholar 

  • D’Cruz R, Tendulkar AV (1970) Genetic studies in bengal gram (Cicer arietinum L.) I. Double-pod × white-flowered white gram. II. Res J Mahatma Phule Krishi Vidyapeeth 1:121–127

    Google Scholar 

  • Danehloueipour N, Clarke HJ, Yan G, Khan TN, Siddique KHM (2008) Leaf type is not associated with ascochyta blight disease in chickpea (Cicer arietinum L.). Euphytica 162:281–289

    Article  Google Scholar 

  • Das S, Upadhayaya HD, Srivastava R, Bajaj D, Gowda CL, Sharma S, Singh S et al (2015) Genome-wide insertion-deletion (InDel) marker discovery and genotyping for genomics-assisted breeding applications in chickpea. DNA Res 22:377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis TM (1988) Two genes that confer ineffective nodulation in chickpea (Cicer arietinum L.). J Hered 79:476–478

    Article  Google Scholar 

  • Davis TM (1991) Linkage relationships of genes for leaf morphology, flower color, and root nodulation in chickpea. Euphytica 54:117–123

    Article  Google Scholar 

  • Davis TM, Foster KW, Phillips DA (1985) Nodulation mutants in chickpea. Crop Sci 25:345–348

    Article  Google Scholar 

  • Davis TM, Foster KW, Phillips DA (1986) Inheritance and expression of three genes controlling root nodule formation in chickpea. Crop Sci 26:719–723

    Article  Google Scholar 

  • Deokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar’an B (2014) Genome-wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics 15:708

    Article  PubMed  PubMed Central  Google Scholar 

  • Duke, JA (1981) Handbook of Legumes of world economic importance. Plenum Press, New York, 345p

    Google Scholar 

  • Fierst JL (2015) Using linkage maps to correct and scaffold de novo genome assemblies: methods, challenges and computational tools. Front Genet 2015(6):220

    Google Scholar 

  • Flandez-Galvez H, Ford R, Pang ECK, Taylor PWJ (2003) An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence-tagged microsatellite site and resistance gene analog markers. Theor Appl Genet 106:1447–1456

    Article  CAS  PubMed  Google Scholar 

  • Gaur PM, Gour VK (2002) A gene producing one to nine flowers per flowering node in chickpea. Euphytica 128:231–235

    Article  CAS  Google Scholar 

  • Gaur PM, Slinkard AE (1990) Inheritance and linkage of isozyme coding genes in chickpea. J Hered 81:455–461

    Article  CAS  Google Scholar 

  • Gaur R, Azam S, Jeena G, Khan AW, Choudhary S, Jain M, Yadav G, Tyagi AK, Chattopadhyay D, Bhatia S (2012) High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res 19:357–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur R, Jeena G, Shah N, Gupta S, Pradhan S, Tyagi AK, Jain M, Chattopadhyay D, Bhatia S (2015) High density linkage mapping of genomic and transcriptomic SNPs for synteny analysis and anchoring the genome sequence of chickpea. Sci Rep 5:13387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur R, Sethy NK, Choudhary S, Shokeen B, Gupta V, Bhatia S (2011) Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (Cicer arietinum L.). BMC Genomics 12:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghatge RD (1993) Inheritance of seed size in Chickpea (Cicer arietinum L.). J Soils Crops 3:56–59

    Google Scholar 

  • Gowda SJM, Radhika P, Kadoo NY, Mhase LB, Gupta VS (2009) Molecular mapping of wilt resistance genes in chickpea. Mol Breed 24:177–183

    Article  CAS  Google Scholar 

  • Gujaria N, Kumar A, Dauthal P, Dubey A, Hiremath P, BhanuPrakash A, Farmer A, Bhide M, Shah T, Gaur PM, Upadhyaya HD, Bhatia S, Cook DR, May GD, Varshney RK (2011) Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theor Appl Genet 122:1577–1589

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetics and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Halila I, Cobos MJ, Rubio J, Millan T, Kharrat M, Gil J (2009) Tagging and mapping a second resistance gene for Fusarium wilt race 0 in chickpea. Eur J Plant Pathol 124:87–92

    Article  CAS  Google Scholar 

  • Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA, Chamarthi SK et al (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotech J 10:716–732

    Article  CAS  Google Scholar 

  • Hossain S, Ford R, McNeil D, Pittock C, Panozzo JF (2010a) Development of a selection tool for seed shape and QTL analysis of seed shape with other morphological traits for selective breeding in chickpea (Cicer arietinum L.). Aust. J Crop Sci 4(4):278–288

    Google Scholar 

  • Hossain S, Ford R, McNeil D, Pittock C, Panozzo JF (2010b) Inheritance of seed size in chickpea (Cicer arietinum L.) and identification of QTL based on 100-seed weight and seed size index. Aust J Crop Sci 4:126–135

    Google Scholar 

  • Huettel B, Santra D, Muehlbauer FJ, Kahl G (2002) Resistance gene analogues of chickpea (Cicer arietinum L.): isolation, genetic mapping and association with a Fusarium resistance gene cluster. Theor Appl Genet 105:479–490

    Article  CAS  PubMed  Google Scholar 

  • Idnani N (1998) Inheritance and linkage studies with some isozyme and morphological loci in chickpea. M.Sc. Dissertation, JNKVV, India

    Google Scholar 

  • Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM et al (2015) Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genomics 290(2):559–571

    Article  CAS  PubMed  Google Scholar 

  • Jamalabadi JG, Saidi A, Karami E, Kharkesh M, Talebi R (2013) Molecular mapping and characterization of genes governing time to flowering, seed weight, and plant height in an intraspecific genetic linkage map of chickpea (Cicer arietinum). Biochem Genet 51:387–397

    Article  CAS  PubMed  Google Scholar 

  • Karami E, Talebi R, Kharkesh M, Saidi A (2015) A linkage map of chickpea (Cicer arietinum L.) based on population from ILC3279 × ILC588 crosses: location of genes for time to flowering, seed size and plant height. Genetika 47:253–263

    Article  Google Scholar 

  • Kazan K, Muehlbauer EJ, Weeden NE, Ladizinsky G (1993) Inheritance and linkage relationships of morphological and isozyme loci in chickpea (Cicer arietinum L.). Theor Appl Genet 86:417–426

    Article  CAS  PubMed  Google Scholar 

  • Khan AR, Akhtar AR (1934) The inheritance of petal colour in gram. Agric Livestock India 4:127–155

    Google Scholar 

  • Knights EJ, Wood JA, Harden S (2010) A gene influencing seed shape of desi type chickpea (Cicer arietinum L.). Plant Breed 130:278–280

    Article  Google Scholar 

  • Kujur A, Upadhyaya HD, Shree T, Bajaj D, Das S, Saxena M, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Ultra-high density intra-specific genetic linkage maps accelerate identification of functionally relevant molecular tags governing important agronomic traits in chickpea. Sci Rep 5:9468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Srivastava RK, Ganesh M (2000) Penetrance and expressivity of the gene for double-podding in chickpea. J Hered 91:234–236

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Singh O (1995) Inheritance of seed size in chickpea. J Genet Breed 49:99–103

    Google Scholar 

  • Ladizinsky G, Alder A (1976) The origin of chickpea Cicer arietinum L. Euphytica 25:211–217

    Article  Google Scholar 

  • Malhotra RS, Bejiga G, Singh KB (1997) Inheritance of seed size in chickpea. J Genet Breed 51:45–50

    Google Scholar 

  • Mayer MS, Tullu A, Simon CJ Kumar J, Kaiser WJ, Kraft JM, Muehlbauer FJ (1997) Development of a DNA marker for fusarium wilt resistance in chickpea. Crop Sci 37:1625–1629

    Google Scholar 

  • Millan T, Clarke HJ, Siddique KHM, Buhariwalla HK, Gaur PM, Kumar J, Gil J, Kahl G, Winter P (2006) Chickpea molecular breeding: new tools and concepts. Euphytica 147:81–103

    Article  Google Scholar 

  • Millan T, Winter P, Ju¨ngling R, Gil J, Rubio J, Cho S, Cobos MJ, Iruela M, Rajesh PN, Tekeoglu M, Kahl G, Muehlbauer FJ (2010) A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica 175:175–189

    Google Scholar 

  • Nayak SN, Zhu H, Varghese N, Datta S, Choi H-K, Horres R, Jüngling R, Singh J, Kavi Kishor PB, Sivaramakrihnan S, Hoisington DA, Kahl G, Winter P, Cook DR, Varshney RK (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120:1415–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palomino C, Fernández-Romero M, Rubio J, Torres A, Moreno M, Millán T (2009) Integration of new CAPS and dCAPS-RGA markers into a composite chickpea genetic map and their association with disease resistance. Theor Appl Genet 118:671–682

    Article  CAS  PubMed  Google Scholar 

  • Patil JA, D’Cruz R (1964) Inheritance of seed size in gram (Cicer arietinum). Poona Agricultural College Magazine 54: 21–22

    Google Scholar 

  • Pawar AM, Patil JA (1983) Genetic studies in gram. J Maharashtra Agric Univ 8:54–56

    Google Scholar 

  • Pfaff T, Kahl G (2003) Mapping of gene-specific markers on the genetic map of chickpea (Cicer arietinum L.). Mol Genet Genomics 269:243–251

    CAS  PubMed  Google Scholar 

  • Pundir RPS, Mengesha MH, Reddy KN (1990) Leaf types and their genetics in chickpea (Cicer arietinum L.). Euphytica 45:197–200

    Google Scholar 

  • Radhika P, Gowda SJM, Kadoo NY, Mhase LB, Jamadagni BM, Sainani MN, Chandra S, Gupta VS (2007) Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theor Appl Genet 115:209–216

    Article  CAS  PubMed  Google Scholar 

  • Rajesh PN, Tullu A, Gil J, Gupta VS, Ranjekar PK, Muehlbauer FJ (2002) Identification of an STMS marker for double-podding gene in chickpea. Theor Appl Genet 105:604–607

    Article  CAS  PubMed  Google Scholar 

  • Ratnaparkhe M, Santra DK, Tullu A, Muehlbauer FJ (1998) Inheritance of inter simple sequence repeat polymorphisms and linkage with a fusarium wilt resistance gene in chickpea. Theor Appl Genet 96:348–353

    Article  CAS  PubMed  Google Scholar 

  • Rubio J, Hajj-Moussa E, Kharrat M, Moreno MT, MillanT Gill J (2003) Two genes and linked RAPD markers involved in resistance to Fusarium oxysporum f. sp. ciceris race 0 in chickpea. Plant Breed 122:188–191

    Article  CAS  Google Scholar 

  • Sabbavarapu MM, Sharma M, Chamarthi SK, Swapna N, Rathore A, Thudi M, Gaur PM, Pande S, Singh S, Kaur L, Varshney RK (2013) Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 193:121–133

    Article  Google Scholar 

  • Sant VJ, Patankar AG, Sarode ND, Mhase IB, Sainani MN, Deshmukh RB, Ranjekar PK, Gupta VS (1999) Potential of DNA markers in detecting divergence and in analysing heterosis in Indian elite chickpea cultivars. Theor Appl Genet 98:1217–1225

    Article  CAS  Google Scholar 

  • Santra DK, Tekeoglu M, Ratnaparkhe M, Kaiser WJ, Muehlbauer FJ (2000) Identification and mapping of QTLs conferring resistance to ascochyta blight in chickpea. Crop Sci 40:1606–1612

    Article  CAS  Google Scholar 

  • Saxena MS, Bajaj D, Das S, Kujur A, Kumar V, Singh M et al (2014) An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea. DNA Res 21:695–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma KD, Chen W, Muehlbauer FJ (2005) Genetics of chickpea resistance to five races of Fusarium wilt and a concise set of race differentials for Fusarium oxysporum f. sp. Ciceris. Plant Dis 89:385–390

    Article  Google Scholar 

  • Sharma KD, Muehlbauer FJ (2007) Fusarium wilt of chickpea: physiological specialization, genetics of resistance and resistance gene tagging. Euphytica 157:1–14

    Article  CAS  Google Scholar 

  • Sharma KD, Winter P, Kahl G, Muehlbauer F (2004) Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor Appl Genet 108:1243–1248

    Article  CAS  PubMed  Google Scholar 

  • Simon CJ, Muehlbauer FJ (1997) Construction of chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115–119

    Article  CAS  Google Scholar 

  • Singh KP, Chaturvedi SK (1998) Genetics of triple floweredness in chickpea. Indian J Pulses Res 11:15–17

    CAS  Google Scholar 

  • Singh O, Rheenen HAV, Rupela OP (1992) Inheritance of a new non-nodulation gene in chickpea. Crop Sci 32:41–43

    Article  Google Scholar 

  • Singh D, Shyam R (1959) Genetics of two new mutants in Cicer arietinum. Indian J Genet 19:73–82

    Google Scholar 

  • Singh O, van Rheenen HA (1994) Genetics and contribution of the multi seeded and double-podded character to grain yield of chickpea. Indian J Pulses Res 7:97–102

    Google Scholar 

  • Srinivasan S, Gaur PM, Rao BV (2008) Allelic relationship between spontaneous and induced mutant genes for stem fasciation in chickpea. Plant Breed 127:319–321

    Article  Google Scholar 

  • Tar’an B, Warkentin T, Tullu A, Vandenberg A (2007) Genetic relationships among chickpea (Cicer arietinum L.) genotypes based on the SSRs at the quantitative trait loci for resistance to Ascochyta blight. Eur J Plant Pathol 119:39–51

    Google Scholar 

  • Tekeoglu M, Rajesh PN, Muehlbauer FJ (2002) Integration of sequence tagged a microsatellite sites to the chickpea genetic map. Theor Appl Genet 105:47–854

    Google Scholar 

  • Tekeoglu M, Tullu A, Kaiser WJ, Muehlbauer FJ (2000) Inheritance and linkage of two genes that confer resistance to Fusarium wilt in chickpea. Crop Sci 40:1247–1251

    Article  CAS  Google Scholar 

  • Thompson C, Tar’an B (2014) Genetic characterization of the acetohydroxyacid synthase (AHAS) gene responsible for resistance to imidazolinone in chickpea (Cicer arietinum L.). Theor Appl Genet 127:1583–1591

    Google Scholar 

  • Thudi M, Bohra A, Nayak SN, Varghese N, Shah TM, Penmetsa RV et al (2011) Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). PLoS ONE 6(11):e27275. doi:10.1371/journal.pone.0027275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tullu A, Kaiser WJ, Kraft JM, Muehlbauer FJ (1999) A second gene for resistance to race 4 of Fusarium wilt in chickpea and linkage with a RAPD marker. Euphytica 109:43–50

    Article  CAS  Google Scholar 

  • Tullu A, Muehlbauer FJ, Simon CJ, Mayer MS, Kumar J, Kaiser WJ, Kraft JM (1998) Inheritance and linkage of a gene for resistance to race 4 of Fusarium wilt and RAPD markers in chickpea. Euphytica 102:227–232

    Article  CAS  Google Scholar 

  • Tuwafe S, Kahler AL, Boe A, Ferguson M (1988) In-heritance and geographical distribution of allozyme polymorphisms in chickpea (Cicer arietinum L). J Hered 79:170–174

    Article  Google Scholar 

  • Upadhyaya HD, Kumar S, Gowda CLL, Singh S (2006) Two major genes for seed size in chickpea (Cicer arietinum L.). Euphytica 147:311–315

    Article  CAS  Google Scholar 

  • van der Maesen LJG (1972) Cicer L.: a monograph of the genus, with especial reference to the chickpea (Cicer arietinum L.), its ecology and cultivation. Mededelingen Landbouwhogeschool Wageningen, Nederland

    Google Scholar 

  • van Rheenen HA, Pundir RPS, Miranda JH (1994) Induction and inheritance of determinate growth habit in chickpea (Cicer arietinum L.). Euphytica 78:137–141

    Article  Google Scholar 

  • Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Winter P, Benko-Iseppon AM, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santara D, Sant VJ, Rajesh PN, Kahl G, Muhelbauer FJ (2000) A linkage map of chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum × C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163

    Article  CAS  Google Scholar 

  • Winter P, Pfaff T, Udupa SM, Huttel B, Sharma PC, Sahi S, Arrequin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.). Mol Gen Genet 262:90–101

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bunyamin Tar’an .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deokar, A., Tar’an, B. (2017). Classical Genetics and Gene Mapping. In: Varshney, R., Thudi, M., Muehlbauer, F. (eds) The Chickpea Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-66117-9_7

Download citation

Publish with us

Policies and ethics