Skip to main content

Cytogenetics of Cicer

  • Chapter
  • First Online:
The Chickpea Genome

Abstract

Chickpea (Cicer arietinum) is among the most widely grown grain legumes, with the major growing area concentrated in the Indian subcontinent. The species is diploid (2n = 2x = 16) and is the only domesticated species in a genus, which includes over 40 annual and perennial species. The progenitor of the cultivated form is the annual species C. reticulatum, but both annual and perennial relatives have been considered as donors of useful genetic variation. Recent advances in genomic analysis have expanded the results of earlier cytogenetic research in the species, which established base information with respect to the karyotype (chromosome number, length, and morphology; and some limited descriptions based on banding) and an estimate of nuclear genome size. Chromosome behavior at meiosis has been characterized in a few Cicer species and some wide hybrids. To date, only a small number of DNA sequences have been chromosomally localized using in situ hybridization. No detailed cytogenetic map has been elaborated, and the level of knowledge regarding the long-range molecular chromosomal organization of the genome is rudimentary. A recently developed method for sorting chickpea chromosome using flow cytometry now offers a more effective means of exploring the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbo S, Miller TE, Reader SM et al (1994) Detection of ribosomal DNA sites in lentil and chickpea by fluorescent in situ hybridization. Genome 37:713–716

    Article  CAS  PubMed  Google Scholar 

  • Abbo S, Mesghenna YT, van Oss H (2011) Interspecific hybridization in wild Cicer sp. Plant Breed 130:150–155

    Article  Google Scholar 

  • Abbo S, van-Oss Pinhasi R, Gopher A et al (2014) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends in Plant Science 19(6):351–360

    Article  CAS  PubMed  Google Scholar 

  • Ahmad F (1989) The chromosomal architecture of Cicer arietinum Alef. A wild relative of chickpea. Cytologia 54:753–757

    Article  Google Scholar 

  • Ahmad F (2000) A comparative study of chromosome morphology among the nine annual species of Cicer L. Cytobios 101:37–53

    CAS  PubMed  Google Scholar 

  • Ahmad F, Chen Q (2000) Meiosis in Cicer L. species. The relationship between chiasma frequency and genome length. Cytology 65:161–166

    Article  Google Scholar 

  • Ahmad F, Hymowitz T (1993) The fine structure of chickpea (Cicer arietinum L.) chromosomes as revealed by pachytene analysis. TAG. Theoretical and Applied Genetics. 86:637–641

    Article  CAS  PubMed  Google Scholar 

  • Ahmad F, Slinkard AE (1992) Genetic relationship in the genus Cicer L. as revealed by polyacrylamide gel electrophoresis of seed storage protein. TAG. Theoretical and Applied Genetics. 84:688–692

    CAS  PubMed  Google Scholar 

  • Ahmad F, Slinkard AE (2004) The extent of embryo and endosperm growth following interspecific hybridization between Cicer arietinum L. and related annual wild species. Genetic Resources and Crop Evolution 51:765–772

    Article  Google Scholar 

  • Ahmad F, Gaur PM, Slinkard AE (1992) Isozyme polymorphic and phylogenetic interpretations in the genus Cicer L. TAG. Theoretical and Applied Genetics. 83:620

    Article  CAS  PubMed  Google Scholar 

  • Aliyeva-Schorr L, Beier S, Karafiátová M et al (2015) Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3. The Plant J 84:385–394

    Article  CAS  Google Scholar 

  • Altaf N, Ahmad MS (1986) Plant regeneration and propagation of chickpea (Cicer arietinum L.) through tissue-culture techniques, pp 407–417. In: Proceeding of the symposium on nuclear techniques and in vitro culture for plant improvement, August 1985. International Atomic Energy Agency, Vienna, pp 19–23

    Google Scholar 

  • Armstrong CS (1981) ‘Grasslands Moata’ tetraploid Italian ryegrass (Lolium multiflorum Lam.). New Zeal J Exp Agr 9:337–341

    Article  Google Scholar 

  • Bajaj D, Das S, Badoni S et al (2015) Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea. Sci Rep 5:12468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajal YPS, Gosal SS (1987) Pollen embryogenesis and chromosomal variation in cultured anthers of chickpea. Int Chikpea Newls 17:12–13

    Google Scholar 

  • Bassiri A, Ahmad F, Sinkard AE (1987) Pollen grain germination and pollen tube growth following in vivo and in vitro self and interspecific pollinations in annual Cicer species. Euphytica 36:667–675

    Article  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond Ser B-Biol Sci 274:227–274

    Article  CAS  Google Scholar 

  • Buhariwalla HK, Jayashree B, Eshwar K et al (2005) Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus. BMC Plant Biology 5:16. doi:10.1186/1471-2229-5-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell, Clayton G (1997) Grass pea. Lathyrus sativus L. Promoting the conservation and use of underutilized and neglected crops. 18. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Cápal P, Blavet N, Vrána J et al (2015) Multiple displacement amplification of the DNA from single flow-sorted plant chromosome. Plant J 84:838–844

    Article  PubMed  CAS  Google Scholar 

  • Choulet F, Alberti A, Theil S et al (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345(6194):1249721. doi:10.1126/science.1249721

    Article  PubMed  CAS  Google Scholar 

  • Collard BCY, Ades PK, Pang ECK et al (2001) Prospecting for sources of resistance to ascochyta blight in wild Cicer species. Aust J Plant Pathol 30:271–276

    Article  Google Scholar 

  • Croser JS, Ahmad F, Clarke HJ et al (2003) Utilisation of wild Cicer in chickpea improvement—progress, constrains and prospects. Australian Journal of Agricultural Research 54:429–444

    Article  Google Scholar 

  • Cviková K, Cattonaro F, Alaux M et al (2015) High-throughput physical map anchoring via BAC-pool sequencing. BMC Plant Biology 11(15):99. doi:10.1186/s12870-015-0429-1

    Article  CAS  Google Scholar 

  • Danilova TV, Friebe B, Gill BS (2014) Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. TAG. Theoretical and Applied Genetics. 127(3):715–730. doi:10.1007/s00122-013-2253-z

    Article  CAS  PubMed  Google Scholar 

  • Doležel J, Doleželová M, Novák FJ (1994) Flow cytometric estimation of nuclear DNA amount in diploid banana (Musa acuminata and Musa balbisiana). Biologia Plantarum 3:351–357

    Article  Google Scholar 

  • Forster BP, Heberle-Bors E, Kasha KJ et al (2007) The resurgence of haploids in higher plants. Trends Plant Sco 12:368–375

    Article  CAS  Google Scholar 

  • Galasso I, Pignone D (1992) Characterization of chickpea chromosomes by banding techniques. Genet Resour Evol 39:115–119

    Google Scholar 

  • Galasso I, Frediani M, Maggiani M et al (1996) Chromatin characterization by banding techniques, in situ hybridization and nuclear DNA content in Cicer L (Leguminosae). Genome 39:258–265

    Article  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica). Science 296:92–100

    Article  CAS  PubMed  Google Scholar 

  • Gortner G, Nenno M, Weising K et al (1998) Chromosomal localization and distribution of simple sequence repeat and the Arabidopsis-type telomere sequence in the genome of Cicer arietinum L. Chromosome Research 6:97–104

    Article  CAS  PubMed  Google Scholar 

  • Grewal RK, Lulsdorf M, Croser J et al (2009) Double-haploid production in chickpea (Cicer arietinum L.): role of stress treatment. Plant Cell Reports 28:1289–1299

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Bahl JR (1983) Cytogenetics and origin of some pulse crops. In: Swaminathan MS, Gupta PK, Sinha U (eds) Cytogenetics of crop plants. Macmillan India, New Dehli, pp 405–440

    Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxonomy 20:509–517

    Article  Google Scholar 

  • Haware MP, McDonald D (1992) Integrated management of botrytis gray mold of chickpea. In: Haware MP, Faris DG, Gowda CLL (ed) Botrytis gray mold of chickpea: summary proceedings of the BARI/ICRISAT working group meeting to discuss collaborative research on botrytis gray mold of chickpea. ICRISAT, Patacheru, India 1

    Google Scholar 

  • Huda S, Islam R, Bari MA et al (2001) Anther culture of chickpea. Int Chickpea Pigeonpea Newsl 8:24–26

    Google Scholar 

  • Idziak D, Hazuka I, Poliwczak B et al (2014) Insight into the karyotype of brachypodium species using comparative chromosomes barcoding. PLoS ONE 9(3):e93503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iruela M, Rubio J, Cubero JI, Gil J et al (2002) Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. TAG. Theoretical and Applied Genetics. 104:643–651

    Article  CAS  PubMed  Google Scholar 

  • Iyengar NK (1939) Cytological investigation on the genus Cicer. Ann Bot New Series 3:271–305

    Article  Google Scholar 

  • Jain M, Misra G, Patel RK et al (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74(5):715–729

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal HK, Singh BD, Singh RM (1987) Improvement of chickpea (Cicer arietinum L.) through introgression of genes from Cicer reticulatum. Indian Journal of Agricultural Sciences 57:880–883

    Google Scholar 

  • Jiang J, Bikram SG (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Jiang JM, Gill BS, Wang GL et al (1995) Metaphase and interphase fluorescence in-situ hybridization mapping of the rice genome with bacterial artificial chromosomes. PNAS 92:4487–4491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang G, Zeng J, He Y (2014) Analysis of QTL affecting chlorophyll content of rice leaves in a double haploid population and two BC populations. Gene 536(2):287–295

    Article  CAS  PubMed  Google Scholar 

  • Kabir G, Singh RM (1991) Meiotic studies in two species of Cicer and their hybrids. Cytologia 56:577–585

    Article  Google Scholar 

  • Karafitátová M, Bartoš J, Kopecký D et al (2013) Mapping nonrecombining region in barley using multicolor FISH. Chromosome Research 8:739–751

    Article  CAS  Google Scholar 

  • Kaur Dalvir, Singhal Vijay Kumar (2010) Chromosome number, meiosis and pollen fertility in Vicia rigidula Royle and V. tenera Grah. from cold desert regions of India. CYTOLOGIA 75(1):9–14

    Article  Google Scholar 

  • Kazan K, Muehlbauer FJ (1991) Allozyme variation and phylogeny in annual species of Cicer (Leguminosae). Plant Systematics and Evolution 175:11–21

    Article  CAS  Google Scholar 

  • Khan SK, Gosh PD (1983) In vitro induction of androgenesis and organogenesis in Cicer arietinum L. Current Science 52:891–893

    CAS  Google Scholar 

  • Kinoshita T, Takahashi M (1969) Studies in polyploid varieties of sugar beets. XIV. Use of cytoplasmic male sterility in the production of triploid hybrids, and their performance in trials. J Fac Agric, Hokkaido Univ 56:171–186

    Google Scholar 

  • Kordi M, Majd A, Valizadeh M et al (2006) A comparative study of chromosome morphology among some genotypes of Cicer arietinum L. Pakistan J Biol Sci 9:1225–1230

    Article  Google Scholar 

  • Kubaláková M, Valárik M, Bartoš J et al (2003) Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46:893–905

    Article  PubMed  Google Scholar 

  • Kujur A, Bajaj D, Upadhyaya HD et al (2015) Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. Front Plant Sci 6:162. doi:10.3389/fpls.2015.00162

    Article  PubMed  PubMed Central  Google Scholar 

  • Kush GS, Singh RJ, Sur SC et al (1984) Primary trisomics of rice: origin, morphology, cytology and use in linkage mapping. Genetics 107:141–163

    Google Scholar 

  • Kutarekar DR, Wanjari KB (1983) Karyomorphological studies in some of varieties of Bengal gram (Cicer aretinum Linn.). Cytologia 48:699–705

    Article  Google Scholar 

  • Ladizinski G, Adler A (1976a) The origin of the chickpea Cicer arietinum L. Euphytica 25:211–217

    Article  Google Scholar 

  • Ladizinski G, Adler A (1976b) Genetic relationship among the annual species of Cicer L. TAG. Theoretical and Applied Genetics. 48:197–203

    Article  Google Scholar 

  • Ladizinsky G (1979) Seed dispersal in relation to the domestication of Middle East legumes. Economic Botany 33:284–289

    Article  Google Scholar 

  • Lapitan NLV, Brown SE, Kennard W et al (1997) FISH physical mapping with barley BAC clones. Plant J 11:149–156

    Article  CAS  Google Scholar 

  • Li F, Fan G, Lu C et al (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology 33:524–530

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Stiller J, Berkman PJ et al (2013) Sequence-based analysis of translocations and inversions in bread wheat (Triticum aestivum L.). PLoS One. 15; 8(11):e79329

    Google Scholar 

  • Mallikarjuna N (1999) Ovule and ebryo culture to obtain hybrids from interspecific incompatible pollinations in chickpea. Euphytica 110:1–6

    Article  Google Scholar 

  • Mayer KFX, Rogers J, Doležel J et al (2014) A chromosome-based draft sequence of the hexaploid wheat (Triticum aestivum) genome. Science 345 (6194)

    Google Scholar 

  • McClintock B (1929) Chromosome morphology in Zea mays. Science 69:629

    Article  CAS  PubMed  Google Scholar 

  • Meenakshi G, Subramaniam MK (1960) Tandem satellites in Cicer arietinum Lin. CurrSci 29:438–439

    Google Scholar 

  • Mishra SK, Sharma B, Sharma SK (2007) Genetic and cytogenetic of lentil. In: Yadav SS, McNeil DK, Stevenson PC (eds) Lentil—an ancient crop for modern times. Springer, Dordrecht, p 189

    Google Scholar 

  • Molnár I, Kubaláková M, Šimková H et al (2011) Chromosome isolation by flow sorting in Aegilops umbellulata and Ae. comosa and their allotetraploid hybrids Ae. biuncialis and Ae. geniculata. PLoS ONE 6(11):e27708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ocampo B, Venora G, Errico A et al (1992) Karyotype analysis in the genus Cicer. J Genet Breed 46:229–240

    Google Scholar 

  • Ohri D (1999) Cytology of Cicer songaricum Steph. Ex DC., a wild relative of chickpea. Genetic Resources and Crop Evolution 46:111–113

    Article  Google Scholar 

  • Ohri D, Pal M (1991) The origin of chickpea (Cicer arietinum L.): karyotype and nuclear DNA amount. Heredity 66:367–372

    Article  Google Scholar 

  • Panchangam SS, Mallikarjuna N, Gaur PM (2014) Androgenesis in chickpea: Anther culture and expressed sequence tags derived annotation. Indian J Exp Biol 52:181–188

    Google Scholar 

  • Parween S, Nawaz K, Roy R et al (2015) An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.). Sci Rep 11; 5:12806

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556. doi:10.1038/nature07723

    Article  CAS  PubMed  Google Scholar 

  • Pundir RPS, Rao NK, van der Maesen LJG (1983) Induced autotetraploidy in chickpea (Cicer arietinum L.). TAG. Theoretical and Applied Genetics. 65(2):119–122

    Article  CAS  PubMed  Google Scholar 

  • Pundir RPS, Rao NK, van der Maesen LJG (1985) Distribution of qualitative traits in the world germplasm of chickpea (Cicer arietinum L.). Euphytica 34:697–703

    Article  Google Scholar 

  • Raats D, Frenkel Z, Krugman T et al (2013) The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol. 20; 14(12):138. doi:10.1186/gb-2013-14-12-r138

  • Ramsey J, Ramsey TS (2014) Ecological studies of polyploidy in the 100 years following its discovery. Phil Trans R Soc B 369:20130352

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy LJ (1981) Pachytene analysis in Cajanus cajam, Atylosia lineata and their hybrids. Cytologia 46:397–412

    Article  Google Scholar 

  • Renny-Byfield S, Wendel JF (2014) Doubling down on genomes: polyploidy and crop plants. American Journal of Botany 101(10):1711–1725

    Article  PubMed  Google Scholar 

  • Roorkiwal M, von Wettberg EJ, Upadhyaya HD et al (2014) Exploring germplasm diversity to understand the domestication process in Cicer spp. using SNP and DArT markers. PLoS ONE 9(7):e102016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rotino GL (2016) Anther culture in eggplant (Solanum melongena L.). Methods in Molecular Biology 1359:453–466

    Article  CAS  PubMed  Google Scholar 

  • Ruperao P, Chan C-KK, Azam S et al (2014) A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. Plant Biotechnology Journal 6:778–786

    Article  CAS  Google Scholar 

  • Šafář J, Šimková H, Kubaláková M et al (2010) Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res 129:211–223

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T et al (2008) Genome structure of the legume. Lotus japonicus. DNA Research 15(4):227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatz MC, Maron LG, Stein JC et al (2014) Whole genome de novo assemblies of three divergent strains of rice, oryza sativa, document novel gene space of aus and indica. Genome Biology 15(11):506

    PubMed  PubMed Central  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger K, Ossowski S, Ott F et al (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci U S A 108:10249–10254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert I (1984) Mobile Nucleolus Organizing Regions (NORs) in Allium (Liliaceae s. lat.)?—Interferences from the specificity of silver staining. Pl Syst Evol 144:291–305

    Article  Google Scholar 

  • Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148

    Article  Google Scholar 

  • Schwarzacher T (2003) DNA, chromosomes, and in situ hybridization. Genome 46:953–962

    Article  CAS  PubMed  Google Scholar 

  • Sharma PC, Winter P, Bünger T et al (1995) Abundance and polymorphism of di-, tri- and tetra-nucleotide tandem repeats in chickpea (Cicer arietinum L.) Theor Appl Genet 90:90–96

    Google Scholar 

  • Sharma HC, Bhagwat MP, Pampapathy G et al (2006) Perennial wild relatives of chickpea as potential sources of resistance to Helicoverpa armigera. Genet Re Crop Evol 53:131–138

    Article  Google Scholar 

  • Singh RJ, Hymowitz T (1988) The genomic relationship between Glycine max (L.) Merr. And G. soja Sieb and Zucc. As revealed by pachytene chromosome analysis. TAG. Theoretical and Applied Genetics. 76:705–711

    Article  CAS  PubMed  Google Scholar 

  • Singh KB, Ocampo B (1993) Interspecific hybridization in annual Cicer species. J Genet Breed 47:199

    Google Scholar 

  • Singh RJ, Tsuchiya T (1975) Pachytene chromosomes of barley. Journal of Heredity 66:165–167

    Article  Google Scholar 

  • Singh KB, Malhotra RS, Halila MH et al (1994) Current status and future strategy in breeding chickpea for resistance to botic and abiotic stresses. Euphytica 73:137–149

    Article  Google Scholar 

  • Singh A, Singh NP, Asthana AN (1999) Genetic potential of wide crosses in chickpea. Legume Res 22:19

    Google Scholar 

  • Singh S, Gumber RK, Joshi N et al (2005) Introgression from wild Cicer reticulatum to cultivated chickpea for productivity and disease resistance. Plant Breed 124(5):477–480

    Article  Google Scholar 

  • Sohoo MS, Athwal DS, Chandra S (1970) Colchicine Induced polyploidy in chickpeas (Cicer arietinum L.). TAG. Theoretical and Applied Genetics. 40:163–169

    Article  CAS  PubMed  Google Scholar 

  • Staginnus C, Winter P, Desel C et al (1999) Molecular structure and chromosomal localization of major repetitive DNA families in the chickpea (Cicer arietinum L.) genome. Plant Molecular Biology 39:1037–1050

    Article  CAS  PubMed  Google Scholar 

  • Staginnus C, Desel C, Schmidt T et al (2010) Assembling a puzzle of dispersed retrotransposable sequences in the genome of chickpea (Cicer arietinum L.). Genome 53:1090–1102

    Article  CAS  PubMed  Google Scholar 

  • Stamigna C, Crino P, Saccardo F (2000) Wild relatives of chickpea: multiple disease resistance and problems to introgression in the cultigen. J Genet Breed 54:213–219

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, Columbia

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold (Publ). Ltd. p 216

    Google Scholar 

  • Sudupak MA, Akkaya MS, Kence A (2004) Genetic relationship among perennial and annual Cicer species growing in Turkey assessed by AFLP fingerprinting. Theor Apple Genet 108:937–944

    Article  CAS  Google Scholar 

  • Tayyar RI, Lukaszewski AJ, Waines JG (1994) Chromosome banding pattern in the annual species of Cicer. Genome 37:656–663

    Article  CAS  PubMed  Google Scholar 

  • Thiel T, Graner A, Waugh R et al (2009) Evidence and evolutionary analysis of ancient whole-genome duplications in barley predating the divergence from rice. BMC Evolutionary Biology 22(9):209. doi:10.1186/1471-2148-9-20

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Baum M et al (2008) Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biology 8:106–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Maesen LJG (ed) (1972) Cicer L., A monograf of the genus with the special reference to the chickpea (Cicerarietinum L.) its ecology and cultivation. Veenman and Zonene. Wagenigen, Netherland. p 342

    Google Scholar 

  • van der Maesen LJG (1987) Origin, history and taxonomy of chickpea. In: Saxena MC, Singh KB (eds) The Chickpea, CAB International, Cambridge, UK, 11

    Google Scholar 

  • van Dorrestain B, Baum M, Malhotra RS (1998) Interspecific hybridization between cultivated chickpea (Cicer arietinum L.) and the wild annual species C. judaicum Boiss, C. pinnafidum Jaub & Sp and C. bijungum. In: Rech KH (ed) Opportunities for high quality, healthy and added value crops to meet European demands: Proceedings of the 3rd European Conference on Grain Legumes. Valladoli, Spain, p 362

    Google Scholar 

  • Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for improvement. Nature Biotechnology 31(3):240–246

    Article  CAS  PubMed  Google Scholar 

  • Venora G, Ocampo B, Singh KB, Saccardo F (1995) Karyotype of kabuli-type chickpea (Cicer arietinum L.) by imaging analysis system. Caryologia 48:147–155

    Article  Google Scholar 

  • Verma MM (1990) Crossability studies in different species of Cicer (L.). Crop Improv 17:179–181

    Google Scholar 

  • Verma MM, Ravim M, Sandhu JS (1995) Characterization of the interspecific cross Cicer arietinum L. x Cicer judaicum (Boiss). Plant Breed 114:549–551

    Article  Google Scholar 

  • Vessal SR, Bagheri A, Safarnejad A (2002) The possibility of in vitro haploid production in chickpea (Cicer arietinum L.) J Sci Technol Agric Nat Resour 6:67–76

    Google Scholar 

  • Vláčilová K, Ohri D, Vrána J et al (2002) Development of flow cytogenetics and physical mapping in chickpea (Cicer arietinum L.). Chromosome Research 10:695–706

    Article  PubMed  Google Scholar 

  • Young ND, Debellé F, Oldroyd GE et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480(7378):520–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zatloukalová P, Hřibová E, Kubaláková M et al (2011) Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes. Chromosome Research 19:729–739

    Article  PubMed  CAS  Google Scholar 

  • Zeven AC (1979) Polyploidy and domestication: the origin and survival of polyploids in cytotype mixtures. Basic Life Sciences 13:385–407

    CAS  PubMed  Google Scholar 

  • Zhang P, Li WL, Fellers J, Friebe B et al (2004) BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma 112:288–299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of our late colleague Professor Günter Kahl, who influenced us in many positive ways to work on chickpea. This research was supported by a National Program of Sustainability I (grant number LO1204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslava Karafiátová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karafiátová, M., Hřibová, E., Doležel, J. (2017). Cytogenetics of Cicer . In: Varshney, R., Thudi, M., Muehlbauer, F. (eds) The Chickpea Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-66117-9_4

Download citation

Publish with us

Policies and ethics