Future Prospects for Chickpea Research

Part of the Compendium of Plant Genomes book series (CPG)


Advances in genomics technologies, coupled with the availability of several high-throughput genotyping and sequencing platforms during recent years, provided a kick start to the adoption of modern breeding approaches to develop climate-resilient crops. Chickpea is the most important grain legume crop for global food and nutritional security in the context of population explosion and climate vagaries. During last ten years, it has transformed from orphan legume to genomics resource-rich legume like any other model legume plants. There has been a paradigm shift in the outlook of the scientific community in translating the genomic resources including the genome sequence and re-sequence information for developing superior lines with enhanced resistance or tolerance to important abiotic and biotic stresses. In addition, pan-genome and re-sequencing information of several germplasm lines will enable tailoring climate smart chickpeas. In addition, efforts to broaden the genetic base and enhanced utilization of the available trait-specific germplasm lines, multi-parent advanced generation inter-cross (MAGIC), nested association mapping (NAM) populations in breeding programs will accelerate the genetic grains at a faster pace.


Chickpea Multi-parent Advanced Generation Inter-cross (MAGIC) Nested Association Mapping (NAM) Germplasm Lines Modern Breeding Approaches 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agarwal G, Jhanwar S, Priya P, Singh VK, Saxena MS, Parida SK, Garg R, Jtayagi AK, Jain M (2012) Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLoS ONE 7(12):e52443. doi: 10.1371/journal.pone.0052443 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agarwal G, Sabbavarapu MM, Singh VK, Thudi M, Sheelamary S, Gaur PM and Varshney RK (2015) Identification of a non-redundant set of 202 in silico SSR markers and applicability of a select set in chickpea (Cicer arietinum L.). Euphytica 205:381–394Google Scholar
  3. Bernardo R, Charcosset A (2006) Usefulness of gene information in marker assisted recurrent selection: a simulation appraisal. Crop Sci 46:614–621CrossRefGoogle Scholar
  4. Buhariwalla HK, Jayashree B, Eshwar K, Crouch JH (2005) Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus. BMC Plant Biol 5:16CrossRefPubMedPubMedCentralGoogle Scholar
  5. Garg R, Patel RK, Tyagi AK, Jain M (2011a) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63CrossRefPubMedPubMedCentralGoogle Scholar
  6. Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, Tyagi AK, Jain M (2011b) Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiol 156:1661–1678CrossRefPubMedPubMedCentralGoogle Scholar
  7. Garg R, Bhattacharjee A, Jain M (2014) Genome-scale transcriptomic insights into molecular aspects of abiotic stress responses in chickpea. Plant Mol Biol Rep 33:388–400CrossRefGoogle Scholar
  8. Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M (2016) Transcriptome analyses reveal genotype-and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep. doi: 10.1038/srep19228 Google Scholar
  9. Gaur R, Jeena G, Shah N, Gupta S, Pradhan S, Tyagi AK, Jain M, Chattopadhyay D, Bhatia S (2015) High density linkage mapping of genomic and transcriptomic SNPs for synteny analysis and anchoring the genome sequence of chickpea. Sci Rep 5:13387Google Scholar
  10. Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H, Martinez PA, Chan CKK, Severn-Ellis A, McCombie WR, Parkin IA, Paterson AH (2016) The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 7. doi: 10.1038/ncomms13390
  11. Gujaria N, Kumar A, Dauthal P, Dubey A, Hiremath P, Bhanu Prakash A, Farmer A, Bhide M, Shah T, Gaur PM Upadhyaya HD, Bhatia S, Cook DR, May GD, Varshney RK (2011) Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.) Theor Appl Genet 122:1577–1589Google Scholar
  12. Gupta S, Nawaz K, Parween S, Roy R, Sahu K, Pole AK, Khandal H, Srivastava R, Parida SK, Chattopadhyay D (2017) Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Res 24:1–10PubMedGoogle Scholar
  13. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443CrossRefPubMedGoogle Scholar
  14. Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, BhanuPrakash A, Mulaosmanovic B, Gujaria N, Krishnamurthy L, Gaur PM, KaviKishor PB, Shah T, Srinivasan R, Lohse M, Xiao Y, Town CD, Cook DR, May GD, Varshney RK (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinumL.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931Google Scholar
  15. Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA, Chamarthi SK, Whaley ma, Garcia NC, Gaur PM, Upadhyaya HD, Kavi Kishor PB, Shah TM, Cook D, Varshney RK (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol J 10:716–732Google Scholar
  16. Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Peñagaricano F, Lindquist E, Pedraza MA, Barry K, de Leon N (2014) Insights into the maize pan-genome and pan-transcriptome. The Plant Cell 26(1):121–135CrossRefPubMedPubMedCentralGoogle Scholar
  17. Huang BE, Verbyla KL, Verbyla AP, Raghavan C, Singh VK, Gaur PM, Leung H, Varshney RK, Cavanagh CR (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017CrossRefPubMedGoogle Scholar
  18. Jadhav AA, Rayate SJ, Mhase LB, Thudi M, Chitikineni A, Harer PN, Jadhav AS, Varshney RK, Kulwal PL (2015) Marker-trait association study for protein content in chickpea (Cicer arietinum L.)Google Scholar
  19. Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal R, Gaur PM, Kavi Kishor PB, Nguyen H, Sutton T, Varshney RK (2015) Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genomics 290:559–571CrossRefPubMedGoogle Scholar
  20. Jain M (2012) Next-generation sequencing technologies for gene expression profiling in plants. Briefings in Funct Genomics 11:63–70CrossRefGoogle Scholar
  21. Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Yadav M, Kant C, Sharma P, Bhatia S, Tyagi AK, Chattopadhya D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729CrossRefPubMedGoogle Scholar
  22. Jain M, Chevala VV, Garg R (2014) Genome-wide discovery and differential regulation of conserved and novel microRNAs in chickpea via deep sequencing. J Exp Bot 65:5945–5958CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jhanwar S, Priya P, Garg R, Parida SK, Tyagi AK, Jain M (2012) Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol J 10:690–702CrossRefPubMedGoogle Scholar
  24. Kale SM, Jaganathan D, Ruperao P, Chen C, Punna R, Kudapa H, Thudi M, Roorkiwal M, Katta AVKS Mohan, Doddamani D, Garg V, Kavi Kishor PB, Gaur PM, Nguyen HT, Batley J, Edwards D, Sutton T, Varshney RK (2015) Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinum L.). Sci Rep 5:15296. doi: 10.1038/srep15296
  25. Kohli D, Joshi G, Deokar AA, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S, Srinivsan R, Jain PK (2014) Identification and characterization of wilt and salt stress-responsive microRNAs in Chickpea through high-throughput sequencing. PLoS ONE 9(10):e108851. doi: 10.1371/journal.pone.0108851
  26. Kudapa K, Azam S, Sharpe AG, Taran B, Li R, Deonovic B, Cameron C, Farmer AD, Cannon SB, Varshney RK (2014) Comprehensive transcriptome assembly of chickpea (Cicer arietinum L.) using Sanger and next generation sequencing platforms: development and applications. PLoS ONE 9:e86039. doi: 10.1371/journal.pone.0086039 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang SS (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32(10):1045–1052CrossRefPubMedGoogle Scholar
  28. Lu F, Romay MC, Glaubitz JC, Bradbury PJ, Elshire RJ, Wang T, Li Y, Li Y, Semagn K, Zhang X, Hernandez AG (2015) High-resolution genetic mapping of maize pan-genome sequence anchors. Nat Commun 6:6914. doi: 10.1038/ncomms7914 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mallikarjuna BP, Samineni S, Thudi M, Sajja SB, Kahn AW, Patil A, Viswanatha KP, Varshney RK, Gaur PM (2017) Molecular mapping of flowering time major genes and QTLs in chickpea (Cicer arietinum L.). Front Plant Sci 8:1140Google Scholar
  30. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome wide dense marker maps. Genetics 157:1819–1829Google Scholar
  31. Millan T, Winter P, Jüngling R, Gil J, Rubio J, Cho S, Cobos MJ, Irulea M, Rajesh PN, Tekeoglu M, Kahl G, Muehlbauer FJ (2010) A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica 175:175–189Google Scholar
  32. Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P (2008) Super SAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9:553CrossRefPubMedPubMedCentralGoogle Scholar
  33. Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan CKK, Visendi P, Lai K, Doležel J, Batley J, Edwards D (2017) The pangenome of hexaploid bread wheat. The Plant J. doi: 10.1111/tpj.13515 PubMedGoogle Scholar
  34. Nayak SN, Zhu H, Varghese N, Datta S, Choi HK, Horres R, Jüngling R, Singh J, Kishor P B, Sivaramakrishnan S, Hoisington DA, Kahl G, Winter P, Cook DR, Varshney RK (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120(7):1415–1441Google Scholar
  35. O’Rourke JA, Bolon YT, Bucciarelli B, Vance CP (2014) Legume genomics: understanding biology through DNA and RNA sequencing. Ann Bot 113:107–1120Google Scholar
  36. Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y, Kumar V, Garg V, Bhat RS, Chitikineni A, Janila P, Guo B, Varshney RK (2017) HYPERLINK “” QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15(8):927–941
  37. Parida, SK. Verma M, Yadav SK, Ambawat S, Das S, Garg R, Jain M (2015) Development of genome-wide informative simple sequence repeat markers for large-scale genotyping applications in chickpea and development of web resource. Frontiers Plant Sci 6:645Google Scholar
  38. Parween S, Nawaz K, Roy R, Pole AK, Venkata Suresh B, Misra G, Jain M, Yadav G, Parida SK, Tyagi AK, Bhatia S, Chattopadhyay D (2015). An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.). Sci Rep 5:12806Google Scholar
  39. Pradhan S, Bandhiwal N, Shah N, Kant C, Gaur R, Bhatia S (2014) Global transcriptome analysis of developing chickpea (Cicer arietinum L.) seeds. Frontiers. Plant Sci 5:698Google Scholar
  40. Purushothaman R, Thudi M, Krishnamurthy L, Upadhyaya HD, Kashiwagi J, Gowda CLL, Varshney RK (2015) Association of mid-reproductive stage canopy temperature depression with the molecular markers and grain yields of chickpea (Cicer arietinum L.) germplasm under terminal drought. Field Crops Res 174:1–11CrossRefGoogle Scholar
  41. Pushpavalli R, Krishnamurthy L, Thudi M, Gaur PM, Rao MV, Siddique KHM, Colmer TD, Turner NC, Varshney RK, Vadez V (2015) two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biol 15:124CrossRefPubMedPubMedCentralGoogle Scholar
  42. Roorkiwal M, Sawargaonkar SL, Chitikineni A, Thudi M, Saxena RK, Upadhyaya HD, Isabel Vales M, Riera-Lizarazu O, Varshney RK (2013) Single nucleotide polymorphism genotyping for breeding and genetics applications in chickpea and pigeonpea using the BeadXpress platform. Plant Genome 6:2. doi: 10.3835/plantgenome2013.05.0017 CrossRefGoogle Scholar
  43. Roorkiwal M, Rathore A, Das RR, Singh MK, Jain A, Srinivasan S, Gaur PM, Chellapilla B, Tripathi S, Li Y, Hickey JM, Lorenz A, Sutton T, Crossa J, Jannink J-L, Varshney RK (2016) Genome-enabled prediction models for yield related traits in chickpea. Frontiers in Plant Sci 7:1666CrossRefGoogle Scholar
  44. Roorkiwal M, Jain A, Kale SM, Doddamani D, Chitikineni A, Thudi M, Varshney RK (2017) Development and evaluation of high density SNP array (Axiom®CicerSNP Array) for high resolution genetic mapping and breeding applications in chickpea. Plant Biotechnol J. doi: 10.1111/pbi.12836
  45. Ruperao P, Chan KCK, Azam S, Karafiátová M, Hayashi S, Čížková J, Saxena RK, Šimková H, Song C, Vrána J, Chitikineni A, Visendi P, Gaur PM, Millán T, Singh KB, Taran B, Wang J, Batley J, Doležel J, Varshney RK, Edwards D (2014) A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. Plant Biotechnol J 12:778–786CrossRefPubMedGoogle Scholar
  46. Sabbavarapu MM, Sharma M, Chamarthi SK, Swapna N, Thudi M, Gaur PM, Pande S, Singh S, Kaur L, Varshney RK (2013) Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 193:121–133CrossRefGoogle Scholar
  47. Samineni S, Kamatam S, Thudi M, Varshney RK, Gaur PM (2016) Vernalization response in chickpea is controlled by a major QTL. Euphytica 207:453–461CrossRefGoogle Scholar
  48. Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Sinha P, Chitikineni A, Lekha PT, Garg V, Sharma M, Sameer Kumar CV, Parupalli S, Vechalapu S, Patil S, Muniswamy S, Ghanta A, Yamini KN, Dharmaraj PS, Varshney RK (2015) Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J. doi: 10.1111/pbi.12470 Google Scholar
  49. Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi H, Garg V, Kumar V, Chitikineni A, Gaur PM, Sutton T, Terauchi R, Varshney RK (2016) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J. doi: 10.1111/pbi.12567 Google Scholar
  50. Sun C, Hu Z, Zheng T, Lu K, Zhao Y, Wang W, Shi J, Wang C, Lu J, Zhang D. and Li Z (2016) RPAN: rice pan-genome browser for ∼ 3000 rice genomes. Nucleic Acids Res p.gkw958Google Scholar
  51. Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for simultaneous discovery and transfer of valuable QTL from unadapted germplasm into elite breeding lines. Theoretical Appl Genet 92:191–203CrossRefGoogle Scholar
  52. Tattelin H. Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJ, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genomic analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial pan-genome. Proc Natl Acad Sci USA 102:13950–13955Google Scholar
  53. Thudi M, Bohra A, Nayak SN, Varghese N, Shah TM, Varma RP, Nepolean T, Gudipati S, Gaur PM, Kulwal PL, Upadhyaya HD, Kavikishor PB, Winter P, Kahl G, Town CD, Kilian A, Cook DR, Varshney RK (2011) Novel SSR markers from BAC-End sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). Plos One 6(11):e27275Google Scholar
  54. Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Gangarao NVPR, Fikre A, Kimurto P, Sharma PC, Sheshashayee MS, Tobita S, Kashiwagi J, Ito O, Varshney RK (2014a) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS ONE 9(5):e96758Google Scholar
  55. Thudi M, Gaur PM, L Krishnamurthy L, Mir RR, Kudapa H, Fikre A, Kimurto P, Tripathi S, Soren KR, Mulwa R, Bharadwaj C, Datta S, Chaturvedi SK, Varshney RK (2014b) Genomics-assisted breeding for drought tolerance: a dream comes true in chickpea!. Funct Plant Biol 41:1178–1190Google Scholar
  56. Thudi M, Chitikineni, Liu X, He W, Roorkiwal M, Yang W, Jian J, Doddamani D, Gaur PM, Rathore A, Samineni S, Saxena RK, Xu D, Singh NP, Chaturvedi SK, Zhang G, Wang J, Datta SK, Xu X, Varshney RK (2016a). Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Sci Rep 6:38636Google Scholar
  57. Thudi M, Khan AW, Kumar V, Gaur PM, Katta AVSK, Garg V, Roorkiwal M, Samineni S, Varshney RK (2016b) Whole genome re-sequencing reveals genome wide variations among parental lines of mapping populations in chickpea (Cicer arietinum). BMC Pant Biol 16(1):10CrossRefGoogle Scholar
  58. Vadez V, Krishnamurthy L, Thudi M, Anuradha C, Colmer TD, Turner NC, Siddique KHM, Gaur PM, Varshney RK (2012) Assessment of ICCV 2 × JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTLs for seed yield and yield components. Mol Breeding 30(1):9–21Google Scholar
  59. Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KH, Town CD, Hoisington DA (2009) A comprehensive resource of drought-and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L). BMC Genomics 10:523Google Scholar
  60. Varshney RK, Kudapa H, Roorkiwal M, Thudi M, Pandey KM, Saxena RK, Chamarthi SK, Murali Mohan S, Mallikarjuna N, Upadhyaya HD, Gaur PM, Krishnamurthy L, Saxena KB, Nigam SN, Pande S (2012) Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. J Biosci 37:811–820CrossRefPubMedGoogle Scholar
  61. Varshney, RK Song C, Saxena RK, Azam S, Yu S, Sharpe A, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Garcia NC, Condie JA, Upadhyaya HD, Luo MC, Thudi M, Gowda CLL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezell J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013a). Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246Google Scholar
  62. Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S, Kashiwagi J, Samineni S, Singh VK, Thudi M, Jaganathan D (2013b) Fast-track introgression of for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. The Plant Genome 6(3)Google Scholar
  63. Varshney RK, Mohan SM, Gaur PM, Chamarthi SK, Singh VK, Srinivasan S, Swapna N, Sharma M, Singh S, Kaur L, Pande S (2014a) Marker-assisted backcrossing to introgress resistance to Fusarium Wilt race 1 and Ascochyta blight in C 214, an elite cultivar of chickpea. The plant Genome 7(1):1–11CrossRefGoogle Scholar
  64. Varshney RK, Mir RR, Bhatia S, Thudi M, Hu Y, Azam S, Zhang Y, Jaganathan D, You FM, Gao J, Riera-Lizarazu O, Luo M-C (2014b) Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.). Funct Integrative Genomics 14:59–73CrossRefGoogle Scholar
  65. Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti AK, Jayalakshmi V, Vemula A, Singh SJ, Yasin M, Sheshshayee MS, Viswanatha KP (2014c) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462CrossRefPubMedGoogle Scholar
  66. Varshney RK, Thudi M, Upadhyaya HD, Dwivedi SL, Udupa S, Furman B, Baum M, Hoisington DA (2014d) A SSR kit to study genetic diversity in chickpea (Cicer arietinum L.). Plant Genet Res: Utilization and Charact. doi: 10.1017/S1479262114000392
  67. Varshney RK (2016) Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Sci 242:98–107CrossRefPubMedGoogle Scholar
  68. Wong CK, Bernardo R (2008) Genome-wide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824CrossRefPubMedGoogle Scholar
  69. Xiao J, Zhang Z, Wu J, Yu J (2015) A brief review of software tools for pangenomics. Genomics, Proteomics & Bioinformatics 13(1):73–76CrossRefGoogle Scholar
  70. Zhao Y, Gowda M, Liu W, Würschum T, Maurer HP, Longin FH, Ranc N, Reif JC (2012) Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet 124:769–776CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.International Crops Research Institute for the Semi-Arid TropicsPatancheruIndia
  2. 2.Washington State UniversityPullmanUSA
  3. 3.U.S. Department of AgriculturePullmanUSA

Personalised recommendations