Skip to main content

A Formal Proof of the Expressiveness of Deep Learning

  • Conference paper
Interactive Theorem Proving (ITP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10499))

Included in the following conference series:

Abstract

Deep learning has had a profound impact on computer science in recent years, with applications to image recognition, language processing, bioinformatics, and more. Recently, Cohen et al. provided theoretical evidence for the superiority of deep learning over shallow learning. We formalized their mathematical proof using Isabelle/HOL. The Isabelle development simplifies and generalizes the original proof, while working around the limitations of the HOL type system. To support the formalization, we developed reusable libraries of formalized mathematics, including results about the matrix rank, the Borel measure, and multivariate polynomials as well as a library for tensor analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans. Math. Softw. 32(4), 635–653 (2006)

    Article  MathSciNet  Google Scholar 

  2. Bentkamp, A.: Expressiveness of deep learning. Archive of Formal Proofs (2016). http://isa-afp.org/entries/Deep_Learning.shtml. Formal proof development

  3. Bentkamp, A.: An Isabelle formalization of the expressiveness of deep learning. M.Sc. thesis, Universität des Saarlandes (2016). http://matryoshka.gforge.inria.fr/pubs/bentkamp_msc_thesis.pdf

  4. Bernard, S., Bertot, Y., Rideau, L., Strub, P.: Formal proofs of transcendence for \(e\) and \(\pi \) as an application of multivariate and symmetric polynomials. In: Avigad, J., Chlipala, A. (eds.) CPP 2016, pp. 76–87. ACM (2016)

    Google Scholar 

  5. Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7_11

    Chapter  Google Scholar 

  6. Bhat, S.: Syntactic foundations for machine learning. Ph.D. thesis, Georgia Institute of Technology (2013). https://smartech.gatech.edu/bitstream/handle/1853/47700/bhat_sooraj_b_201305_phd.pdf

  7. Blanchette, J.C., Böhme, S., Fleury, M., Smolka, S.J., Steckermeier, A.: Semi-intelligible Isar proofs from machine-generated proofs. J. Autom. Reason. 56(2), 155–200 (2016)

    Article  MathSciNet  Google Scholar 

  8. Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-based fact selector for Isabelle/HOL. J. Autom. Reason. 57(3), 219–244 (2016)

    Article  MathSciNet  Google Scholar 

  9. Boender, J., Kammüller, F., Nagarajan, R.: Formalization of quantum protocols using Coq. In: Heunen, C., Selinger, P., Vicary, J. (eds.) QPL 2015. EPTCS, vol. 195, pp. 71–83 (2015)

    Google Scholar 

  10. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Heidelberg (2010). 10.1007/978-3-642-14052-5_14

    Chapter  Google Scholar 

  11. Bürgisser, P., Cucker, F., Lotz, M.: The probability that a slightly perturbed numerical analysis problem is difficult. Math. Comput. 77(263), 1559–1583 (2008)

    Article  MathSciNet  Google Scholar 

  12. Caron, R., Traynor, T.: The zero set of a polynomial. Technical report, University of Windsor (2005). http://www1.uwindsor.ca/math/sites/uwindsor.ca.math/files/05-03.pdf

  13. Cohen, N., Sharir, O., Shashua, A.: Deep SimNets. In: CVPR 2016, pp. 4782–4791. IEEE Computer Society (2016)

    Google Scholar 

  14. Cohen, N., Sharir, O., Shashua, A.: On the expressive power of deep learning: a tensor analysis. In: Feldman, V., Rakhlin, A., Shamir, O. (eds.) COLT 2016. JMLR Workshop and Conference Proceedings, vol. 49, pp. 698–728. JMLR.org (2016)

    Google Scholar 

  15. Cohen, N., Shashua, A.: Convolutional rectifier networks as generalized tensor decompositions. In: Balcan, M., Weinberger, K.Q. (eds.) ICML 2016. JMLR Workshop and Conference Proceedings, vol. 48, pp. 955–963. JMLR.org (2016)

    Google Scholar 

  16. Cohen, N., Shashua, A.: Inductive bias of deep convolutional networks through pooling geometry. CoRR abs/1605.06743 (2016)

    Google Scholar 

  17. Haftmann, F., Lochbihler, A., Schreiner, W.: Towards abstract and executable multivariate polynomials in Isabelle. In: Nipkow, T., Paulson, L., Wenzel, M. (eds.) Isabelle Workshop 2014 (2014)

    Google Scholar 

  18. Harrison, J.: A HOL theory of Euclidean space. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005). 10.1007/11541868_8

    Chapter  Google Scholar 

  19. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 135–151. Springer, Heidelberg (2011). 10.1007/978-3-642-22863-6_12

    Chapter  Google Scholar 

  20. Immler, F., Maletzky, A.: Gröbner bases theory. Archive of Formal Proofs (2016). http://isa-afp.org/entries/Groebner_Bases.shtml. Formal proof development

  21. Kam, R.: Case studies in proof checking. Master’s thesis, San Jose State University (2007). http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?context=etd_projects &article=1149

  22. Kobayashi, H., Chen, L., Murao, H.: Groups, rings and modules. Archive of Formal Proofs (2004). http://isa-afp.org/entries/Group-Ring-Module.shtml. Formal proof development

  23. Liu, L., Aravantinos, V., Hasan, O., Tahar, S.: On the formal analysis of HMM using theorem proving. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 316–331. Springer, Cham (2014). 10.1007/978-3-319-11737-9_21

    Chapter  Google Scholar 

  24. Lotz, M.: On the volume of tubular neighborhoods of real algebraic varieties. Proc. Amer. Math. Soc. 143(5), 1875–1889 (2015)

    Article  MathSciNet  Google Scholar 

  25. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). 10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  26. Murphy, T., Gray, P., Stewart, G.: Certified convergent perceptron learning (unpublished draft). http://oucsace.cs.ohiou.edu/~gstewart/papers/coqperceptron.pdf

  27. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  28. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Sutcliffe, G., Schulz, S., Ternovska, E. (eds.) IWIL-2010. EPiC, vol. 2, pp. 1–11. EasyChair (2012)

    Google Scholar 

  29. Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 232–245. Springer, Heidelberg (2007). 10.1007/978-3-540-74591-4_18

    Chapter  MATH  Google Scholar 

  30. Poon, H., Domingos, P.M.: Sum-product networks: a new deep architecture. In: Cozman, F.G., Pfeffer, A. (eds.) UAI 2011, pp. 337–346. AUAI Press (2011)

    Google Scholar 

  31. Prathamesh, T.V.H.: Tensor product of matrices. Archive of Formal Proofs (2016). http://isa-afp.org/entries/Matrix_Tensor.shtml. Formal proof development

  32. Sternagel, C., Thiemann, R.: Executable multivariate polynomials. Archive of Formal Proofs (2010). http://isa-afp.org/entries/Polynomials.shtml. Formal proof development

  33. Thiemann, R., Yamada, A.: Matrices, Jordan normal forms, and spectral radius theory. Archive of Formal Proofs (2015). http://isa-afp.org/entries/Jordan_Normal_Form.shtml. Formal proof development

  34. Wenzel, M.: Isar—a generic interpretative approach to readable formal proof documents. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999). 10.1007/3-540-48256-3_12

    Chapter  Google Scholar 

Download references

Acknowledgment

We thank Lukas Bentkamp, Robert Lewis, Anders Schlichtkrull, Mark Summerfield, and the anonymous reviewers for suggesting many textual improvements. The work has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 713999, Matryoshka).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bentkamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bentkamp, A., Blanchette, J.C., Klakow, D. (2017). A Formal Proof of the Expressiveness of Deep Learning. In: Ayala-Rincón, M., Muñoz, C.A. (eds) Interactive Theorem Proving. ITP 2017. Lecture Notes in Computer Science(), vol 10499. Springer, Cham. https://doi.org/10.1007/978-3-319-66107-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66107-0_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66106-3

  • Online ISBN: 978-3-319-66107-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics