Skip to main content

Formalizing Basic Quaternionic Analysis

  • Conference paper
Interactive Theorem Proving (ITP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10499))

Included in the following conference series:

Abstract

We present a computer formalization of quaternions in the HOL Light theorem prover. We give an introduction to our library for potential users and we discuss some implementation choices.

As an application, we formalize some basic parts of two recently developed mathematical theories, namely, slice regular functions and Pythagorean-Hodograph curves.

This work has been supported by GNSAGA-INdAM and MIUR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reachable from the url https://bitbucket.org/maggesi/quaternions/.

  2. 2.

    Spivak, in his book Calculus on manifolds [10, p. 65], notices that if f(u, v) is a function and \(u=g(x,y)\) and \(v=h(x,y)\), then the chain rule is often written

    $$\begin{aligned} \frac{\partial f}{\partial x} = \frac{\partial f}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial f}{\partial v}\frac{\partial v}{\partial x}, \end{aligned}$$

    where f denotes two different functions on the left- and right-hand of the equation.

  3. 3.

    Commit on Apr 10, 2017, HOL Light GitHub repository.

References

  1. Ciolli, G., Gentili, G., Maggesi, M.: A certified proof of the Cartan fixed point theorems. J. Automated Reason. 47(3), 319–336 (2011). https://doi.org/10.1007/s10817-010-9198-6

    Article  MathSciNet  Google Scholar 

  2. Farouki, R.T., Giannelli, C., Manni, C., Sestini, A.: Identification of spatial PH quintic hermite interpolants with near-optimal shape measures. Comput. Aided Geom. Des. 25(4), 274–297 (2008)

    Article  MathSciNet  Google Scholar 

  3. Farouki, R.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Geometry and Computing. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  4. Fuchs, L., Théry, L.: Implementing geometric algebra products with binary trees. Adv. Appl. Clifford Algebras 24(2), 589–611 (2014)

    Article  MathSciNet  Google Scholar 

  5. Gentili, G., Stoppato, C., Struppa, D.: Regular Functions of a Quaternionic Variable. Springer Monographs in Mathematics. Springer, Heidelberg (2013)

    Book  Google Scholar 

  6. Gentili, G., Struppa, D.C.: A new approach to Cullen-regular functions of a quaternionic variable. Comptes Rendus Math. 342(10), 741–744 (2006)

    Article  MathSciNet  Google Scholar 

  7. Harrison, J.: A HOL theory of euclidean space. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005). https://doi.org/10.1007/11541868_8

    Chapter  Google Scholar 

  8. Harrison, J.: Formalizing basic complex analysis. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof: Festschrift in Honour of Andrzej Trybulec. Studies in Logic, Grammar and Rhetoric, vol. 10, no. 23, pp. 151–165. University of Białystok (2007). http://mizar.org/trybulec65/

  9. Ma, S., Shi, Z., Shao, Z., Guan, Y., Li, L., Li, Y.: Higher-order logic formalization of conformal geometric algebra and its application in verifying a robotic manipulation algorithm. Adv. Appl. Clifford Algebras 26(4), 1305–1330 (2016)

    Article  MathSciNet  Google Scholar 

  10. Spivak, M.: Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus. Advanced Book Program. Avalon Publishing, New York (1965)

    MATH  Google Scholar 

  11. Sudbery, A.: Quaternionic analysis. Math. Proc. Cambridge Philos. Soc. 85(02), 199–225 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Maggesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gabrielli, A., Maggesi, M. (2017). Formalizing Basic Quaternionic Analysis. In: Ayala-Rincón, M., Muñoz, C.A. (eds) Interactive Theorem Proving. ITP 2017. Lecture Notes in Computer Science(), vol 10499. Springer, Cham. https://doi.org/10.1007/978-3-319-66107-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66107-0_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66106-3

  • Online ISBN: 978-3-319-66107-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics