Skip to main content

Design Principles of Peptide Based Self-Assembled Nanomaterials

  • Chapter
  • First Online:
Peptides and Peptide-based Biomaterials and their Biomedical Applications

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1030))

Abstract

The ability to design functionalized peptide nanostructures for specific applications is tied to the ability of controlling the morphologies of the self-assembled superstructures. That, in turn, is based on a thorough understanding of the structural and environmental factors affecting self-assembly. The aim of designing self-assembling nanostructures of controlled geometries is achieved via a combination of directional and non-directional second order interactions. If the interactions are distributed in a geometrically defined way, a specific and selective supramolecular self-assembly motif is the result. In this chapter we detail the role of non-covalent interactions on the self-assembly of peptides; we will also discuss different types of peptide building blocks and design rules for engineering unnatural supramolecular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abb S, Harnau L, Gutzler R, Rauschenbach S, Kern K (2016) Two-dimensional honeycomb network through sequence-controlled self-assembly of oligopeptides. Nat Commun 7:10335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abele S, Guichard G, Seebach D (1998) (S)-β(3)-homolysine- and (S)-β(3)-homoserine-containing β-peptides: CD spectra in aqueous solution. Helv Chim Acta 81:2141–2156

    Article  CAS  Google Scholar 

  • Abele S, Seiler P, Seebach D (1999) Synthesis, crystal structures, and modelling of beta-oligopeptides consisting of 1-(aminomethyl) cyclopropanecarboxylic acid: Ribbon- type arrangement of eight- membered H-bonded rings. Helv Chim Acta 82:1559–1571

    Article  CAS  Google Scholar 

  • Acevedo-Velez C, Andre G, Dufrene YF, Gellman SH, Abbott NL (2011) Single-molecule force spectroscopy of beta-peptides that display well-defined three-dimensional chemical patterns. J Am Chem Soc 133:3981–3988

    Article  CAS  PubMed  Google Scholar 

  • Adams FC, Barbante C (2013) Nanoscience, nanotechnology and spectrometry. Spectrochim Acta Part B 86:3–13

    Article  CAS  Google Scholar 

  • Aggeli A, Nyrkova IA, Bell M, Carrick L, McLeish TCB, Semenov AN, Boden N (2001) Exploiting peptide self-assembly to engineer novel biopolymers: Tapes, ribbons, fibrils and fibres. In: Aggeli A, Boden N, Zhang S (eds) Self-assembling peptide systems in biology, medicine and engineering. Springer, Dordrecht

    Google Scholar 

  • Althuon D, Ronicke F, Furniss D, Quan J, Wellhofer I, Jung N, Schepers U, Brase S (2015) Functionalized triazolopeptoids – a novel class for mitochondrial targeted delivery. Org Biomol Chem 13:4226–4230

    Article  CAS  PubMed  Google Scholar 

  • Altman M, Lee P, Rich A, Zhang SG (2000) Conformational behavior of ionic self-complementary peptides. Protein Sci 9:1095–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen AJ, Robinson JT, Dai HJ, Hunter AC, Andresen TL, Moghimi SM (2013) Single-walled carbon nanotube surface control of complement recognition and activation. Acs Nano 7:1108–1119

    Article  CAS  PubMed  Google Scholar 

  • Appella DH, Christianson LA, Klein DA, Powell DR, Huang XL, Barchi JJ, Gellman SH (1997) Residue-based control of helix shape in beta-peptide oligomers. Nature 387:381–384

    Article  CAS  PubMed  Google Scholar 

  • Appella DH, Barchi JJ, Durell SR, Gellman SH (1999a) Formation of short, stable helices in aqueous solution by beta-amino acid hexamers. J Am Chem Soc 121:2309–2310

    Article  CAS  Google Scholar 

  • Appella DH, Christianson LA, Klein DA, Richards MR, Powell DR, Gellman SH (1999b) Synthesis and structural characterization of helix-forming beta-peptides: trans-2-aminocyclopentanecarboxylic acid oligomers. J Am Chem Soc 121:7574–7581

    Article  CAS  Google Scholar 

  • Appella DH, LePlae PR, Raguse TL, Gellman SH (2000) (R,R,R)-2,5-diaminocylohexanecarboxylic acid, a building block for water-soluble, helix-forming beta-peptides. J Org Chem 65:4766-4769

    Google Scholar 

  • Applequist J, Glickson JD (1971) Conformation of poly-β-alanine in aqueous solution from proton magnetic resonance and deuterium exchange studies. J Am Chem Soc 93:3276–3281

    Article  CAS  PubMed  Google Scholar 

  • Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  CAS  PubMed  Google Scholar 

  • Ariga K, Nakanishi T, Hill JP (2007) Self-assembled microstructures of functional molecules. Curr Opin Colloid Interface Sci 12:106–120

    Article  CAS  Google Scholar 

  • Ariga K, Hill JP, Lee MV, Vinu A, Charvet R, Acharya S (2008) Challenges and breakthroughs in recent research on self-assembly. Sci Tech Adv Mater 9:96

    Article  CAS  Google Scholar 

  • Arnold MS, Guler MO, Hersam MC, Stupp SI (2005) Encapsulation of carbon nanotubes by self-assembling peptide amphiphiles. Langmuir 21:4705–4709

    Article  CAS  PubMed  Google Scholar 

  • Arvidsson PI, Rueping M, Seebach D (2001) Design, machine synthesis, and NMR-solution structure of a β-heptapeptide forming a salt-bridge stabilised 314-helix in methanol and in water. Chem Commun 649–650

    Google Scholar 

  • Arvidsson PI, Ryder NS, Weiss HM, Hook DF, Escalante J, Seebach D (2005) Exploring the antibacterial and hemolytic activity of shorter- and longer-chain beta- alpha,beta-, and gamma-peptides, and of beta-peptides from β(2)-3-aza- and β(3)-2-methylidene-amino acids bearing proteinogenic side chains – A survey. Chem Biodivers 2:401–420

    Article  CAS  PubMed  Google Scholar 

  • Aryal P, Sansom MSP, Tucker SJ (2015) Hydrophobic gating in ion channels. J Mol Biol 427:121–130

    Article  CAS  PubMed  Google Scholar 

  • Balamurugan D, Muraleedharan KM (2012) Chemical environment as control element in the evolution of shapes – hexagons and rods’ from an 11-helical α,β2,3-hybrid peptide. Soft Matter 8:11857–11862

    Article  CAS  Google Scholar 

  • Baldauf C, Gunther R, Hofmann HJ (2006) Theoretical prediction of the basic helix types in α,β-hybrid peptides. Biopolymers 84:408–413

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Balaram P (1997) Stereochemistry of peptides and polypeptides containing omega amino acids. Curr Sci 73:1067–1077

    CAS  Google Scholar 

  • Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, Kirkland M, Serpell LC, Butler MF, Woolfson DN (2009) Rational design and application of responsive α-helical peptide hydrogels. Nat Mater 8:596–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barchi JJ, Huang XL, Appella DH, Christianson LA, Durell SR, Gellman SH (2000) Solution conformations of helix-forming β-amino acid homooligomers. J Am Chem Soc 122:2711–2718

    Article  CAS  Google Scholar 

  • Barth JV, Costantini G, Kern K (2005) Engineering atomic and molecular nanostructures at surfaces. Nature 437:671–679

    Article  CAS  PubMed  Google Scholar 

  • Bartocci S, Morbioli I, Maggini M, Mba M (2015) Solvent-tunable morphology and emission of pyrene-dipeptide organogels. J Pept Sci 21:871–878

    Article  CAS  PubMed  Google Scholar 

  • Bemporad F, Taddei N, Stefani M, Chiti F (2006) Assessing the role of aromatic residues in the amyloid aggregation of human muscle acylphosphatase. Protein Sci 15:862–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berl V, Huc I, Khoury RG, Krische MJ, Lehn JM (2000) Interconversion of single and double helices formed from synthetic molecular strands. Nature 407:720–723

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya P, Du D, Lin YH (2014) Bioinspired nanoscale materials for biomedical and energy applications. J R Soc Interface 11:14

    Google Scholar 

  • Bhushan B (2009) Biomimetics: lessons from nature – an overview. Philos Trans A Math Phys Eng Sci 367:1445–1486

    Article  CAS  PubMed  Google Scholar 

  • Bishop KJM, Wilmer CE, Soh S, Grzybowski BA (2009) Nanoscale forces and their uses in self-assembly. Small 5:1600–1630

    Article  CAS  PubMed  Google Scholar 

  • Blair DF (2003) Flagellar movement driven by proton translocation. FEBS Lett 545:86–95

    Article  CAS  PubMed  Google Scholar 

  • Bolin KA, Millhauser GL (1999) α and 310: the split personality of polypeptide helices. Acc Chem Res 32:1027–1033

    Article  CAS  Google Scholar 

  • Bowerman CJ, Nilsson BL (2010) A reductive trigger for peptide self-assembly and hydrogelation. J Am Chem Soc 132:9526–9527

    Article  CAS  PubMed  Google Scholar 

  • Bowerman CJ, Nilsson BL (2012) Review self-assembly of amphipathic beta-sheet peptides: insights and applications. Biopolymers 98:169–184

    Article  CAS  PubMed  Google Scholar 

  • Bowerman CJ, Liyanage W, Federation AJ, Nilsson BL (2011) Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity. Biomacromolecules 12:2735–2745

    Article  CAS  PubMed  Google Scholar 

  • Boyle AL, Woolfson DN (2011) De novo designed peptides for biological applications. Chem Soc Rev 40:4295–4306

    Article  CAS  PubMed  Google Scholar 

  • Breydo L, Uversky VN (2015) Structural, morphological, and functional diversity of amyloid oligomers. FEBS Lett 589:2640–2648

    Article  CAS  PubMed  Google Scholar 

  • Bromley EHC, Channon KJ (2011) Alpha-helical peptide assemblies: giving new function to designed structures. Prog Mol Biol Transl Sci 103:231–275

    Article  CAS  PubMed  Google Scholar 

  • Bromley EHC, Channon K, Moutevelis E, Woolfson DN (2008) Peptide and protein building blocks for synthetic biology: from programming biomolecules to self-organized biomolecular systems. ACS Chem Biol 3:38–50

    Article  CAS  PubMed  Google Scholar 

  • Bruckner AM, Chakraborty P, Gellman SH, Diederichsen U (2003) Molecular architecture with functionalized β-peptide helices. Angew Chem Int Ed 42:4395–4399

    Article  CAS  Google Scholar 

  • Buehler MJ, Ackbarow T (2008) Nanomechanical strength mechanisms of hierarchical biological materials and tissues. Comput Methods Biomech Biomed Eng 11:595–607

    Article  Google Scholar 

  • Butterfoss GL, Drew K, Renfrew PD, Kirshenbaum K, Bonneau R (2014) Conformational preferences of peptide-peptoid hybrid oligomers. Biopolymers 102:369–378

    Article  CAS  PubMed  Google Scholar 

  • Canalle LA, Lowik D, van Hest JCM (2010) Polypeptide-polymer bioconjugates. Chem Soc Rev 39:329–353

    Article  CAS  PubMed  Google Scholar 

  • Cao MW, Cao CH, Zhang LJ, Xia DH, Xu H (2013) Tuning of peptide assembly through force balance adjustment. J Colloid Interface Sci 407:287–295

    Article  CAS  PubMed  Google Scholar 

  • Care A, Bergquist PL, Sunna A (2015) Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol 33:259–268

    Article  CAS  PubMed  Google Scholar 

  • Castillo-León J, Andersen KB, Svendsen WE (2011) Self–assembled peptide nanostructures for biomedical applications: advantages and challenges. In: Pignatello R (ed) Biomaterials science and engineering. InTechOpen

    Google Scholar 

  • Chakraborty P, Diederichsen U (2005) Three-dimensional organization of helices: Design principles for nucleobase-functionalized β-peptides. Chem Eur J 11:3207–3216

    Article  CAS  PubMed  Google Scholar 

  • Chalker JM, Bernardes GJL, Lin YA, Davis BG (2009) Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem Asian J 4:630–640

    Article  CAS  PubMed  Google Scholar 

  • Chen P (2005) Self-assembly of ionic-complementary peptides: a physicochemical viewpoint. Colloids Surf A Physicochem Eng Asp 261:3–24

    Article  CAS  Google Scholar 

  • Chen CL, Rosi NL (2010) Peptide-based methods for the preparation of nanostructured inorganic materials. Angew Chem Int Ed 49:1924–1942

    Article  CAS  Google Scholar 

  • Chen YZ, Qiu F, Lu YB, Shi YK, Zhao XJ (2009) Geometrical Shape of Hydrophobic section determines the self-assembling structure of peptide detergents and bolaamphiphilic peptides. Curr Nanosci 5:69–74

    Article  CAS  Google Scholar 

  • Cheng RP (2004) Beyond de novo protein design – de novo design of non-natural folded oligomers. Curr Opin Struct Biol 14:512–520

    Article  CAS  PubMed  Google Scholar 

  • Cheng RP, Gellman SH, DeGrado WF (2001) β-peptides: from structure to function. Chem Rev 101:3219–3232

    Article  CAS  PubMed  Google Scholar 

  • Cheng JY, Ross CA, Smith HI, Thomas EL (2006) Templated self-assembly of block copolymers: top-down helps bottom-up. Adv Mater 18:2505–2521

    Article  CAS  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  • Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci USA 96:3590–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cinar G, Ceylan H, Urel M, Erkal TS, Tekin ED, Tekinay AB, Dana A, Guler MO (2012) Amyloid inspired self-assembled peptide nanofibers. Biomacromolecules 13:3377–3387

    Article  CAS  PubMed  Google Scholar 

  • Claridge TDW, Goodman JM, Moreno A, Angus D, Barker SF, Taillefumier C, Watterson MP, Fleet GWJ (2001) 10-Helical conformations in oxetane beta-amino acid hexamers. Tetrahedron Lett 42:4251–4255

    Article  CAS  Google Scholar 

  • Collie GW, Pulka-Ziach K, Lombardo CM, Fremaux J, Rosu F, Decossas M, Mauran L, Lambert O, Gabelica V, Mackereth CD, Guichard G (2015) Shaping quaternary assemblies of water-soluble non-peptide helical foldamers by sequence manipulation. Nat Chem 7:871–878

    Article  CAS  PubMed  Google Scholar 

  • Colson P, Henrist C, Cloots R (2013) Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials. J Nanomater 2013:948510

    Article  CAS  Google Scholar 

  • Coppens MO (2005) Scaling-up and -down in a nature-inspired way. Indust Eng Chem Res 44:5011–5019

    Article  CAS  Google Scholar 

  • Courson DS, Rock RS (2010) Actin cross-link assembly and disassembly mechanics for alpha-actinin and fascin. J Biol Chem 285:26350–26357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crisma M, Formaggio F, Moretto A, Toniolo C (2006) Peptide helices based on alpha-amino acids. Biopolymers 84:3–12

    Article  CAS  PubMed  Google Scholar 

  • Cubberley MS, Iverson BL (2001) Models of higher-order structure: foldamers and beyond. Curr Opin Chem Biol 5:650–653

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Muraoka T, Cheetham AG, Stupp SI (2009) Self-assembly of giant peptide nanobelts. Nano Lett 9:945–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui HG, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cukalevski R, Boland B, Frohm B, Thulin E, Walsh D, Linse S (2012) Role of aromatic side chains in amyloid β-protein aggregation. ACS Chem Neurosci 3:1008–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dado GP, Gellman SH (1994) Intermolecular hydrogen-bonding in derivatives of beta-alanine and gamma-amino buryric-acid model studies for the folding of unnatural polypeptide backbones. J Am Chem Soc 116:1054–1062

    Article  CAS  Google Scholar 

  • Daura X, Jaun B, Seebach D, van Gunsteren WF, Mark AE (1998) Reversible peptide folding in solution by molecular dynamics simulation. J Mol Biol 280:925–932

    Article  CAS  PubMed  Google Scholar 

  • De Pol S, Zorn C, Klein CD, Zerbe O, Reiser O (2004) Surprisingly stable helical conformations in α/β-peptides by incorporation of cis-β-aminocyclopropane carboxylic acids. Angew Chem Int Ed 43:511–514

    Article  CAS  Google Scholar 

  • DeGrado WF, Schneider JP, Hamuro Y (1999) The twists and turns of β-peptides. J Pept Res 54:206–217

    Article  CAS  PubMed  Google Scholar 

  • Dehsorkhi A, Castelletto V, Hamley IW (2014) Self-assembling amphiphilic peptides. J. Pept. Sci. 20:453–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Borgo MP, Mechler AI, Traore D, Forsyth C, Wilce JA, Wilce MCJ, Aguilar MI, Perlmutter P (2013) Supramolecular self-assembly of N-acetyl-capped β-peptides leads to nano- to macroscale fiber formation. Angew Chem Int Ed 52:8266–8270

    Article  CAS  Google Scholar 

  • Delort E, Nguyen-Trung NQ, Darbre T, Reymond JL (2006) Synthesis and activity of histidine-containing catalytic peptide dendrimers. J Org Chem 71:4468–4480

    Article  CAS  PubMed  Google Scholar 

  • Deming TJ (2007) Synthetic polypeptides for biomedical applications. Prog Polym Sci 32:858–875

    Article  CAS  Google Scholar 

  • Doig AJ (2008) Stability and design of α-helical peptides. In: Conn PM (ed) Progress in Molecular Biology and Translational Science, vol 83. Elsevier Academic Press, San Diego

    Google Scholar 

  • Dong H, Paramonov SE, Hartgerink JD (2008) Self-assembly of α-helical coiled coil nanofibers. J Am Chem Soc 130:13691–13695

    Article  CAS  PubMed  Google Scholar 

  • Durand KL, Ma XX, Xia Y (2015) Intra-molecular reactions between cysteine sulfinyl radical and a disulfide bond within peptide ions. Int J Mass Spectrom 378:246–254

    Article  CAS  Google Scholar 

  • Engler AC, Shukla A, Puranam S, Buss HG, Jreige N, Hammond PT (2011) Effects of side group functionality and molecular weight on the activity of synthetic antimicrobial polypeptides. Biomacromolecules 12:1666–1674

    Article  CAS  PubMed  Google Scholar 

  • Eom JH, Gong J, Jeong R, Driver RW, Lee HS (2015) Parallelogram plate shaped foldecture from the controlled self-assembly of α/β-peptide foldamer. Solid State Sci 48:39–43

    Article  CAS  Google Scholar 

  • Epand RF, Raguse TL, Gellman SH, Epand RM (2004) Antimicrobial 14-helical β-peptides: potent bilayer disrupting agents. Biochemistry 43:9527–9535

    Article  CAS  PubMed  Google Scholar 

  • Epand RF, Mowery BP, Lee SE, Stahl SS, Lehrer RI, Gellman SH, Epand RM (2008) Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. J Mol Biol 379:38–50

    Article  CAS  PubMed  Google Scholar 

  • Fairman R, Akerfeldt KS (2005) Peptides as novel smart materials. Curr Opin Struct Biol 15:453–463

    Article  CAS  PubMed  Google Scholar 

  • Fan HY, Lu YF, Stump A, Reed ST, Baer T, Schunk R, Perez-Luna V, Lopez GP, Brinker CJ (2000) Rapid prototyping of patterned functional nanostructures. Natur 405:56–60

    Article  CAS  Google Scholar 

  • Fandrich M, Dobson CM (2002) The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J 21:5682–5690

    Article  PubMed  PubMed Central  Google Scholar 

  • Faul CFJ, Antonietti M (2003) Ionic self-assembly: facile synthesis of supramolecular materials. Adv Mater 15:673–683

    Article  CAS  Google Scholar 

  • Fenske T, Korth HG, Mohr A, Schmuck C (2012) Advances in Switchable supramolecular nanoassemblies. Chem Eur J 18:738–755

    Article  CAS  PubMed  Google Scholar 

  • Fernandes C, Faure S, Pereira E, Thery V, Declerck V, Guillot R, Aitken DJ (2010) 12-Helix folding of cyclobutane β-amino acid oligomers. Org Lett 12:3606–3609

    Article  CAS  PubMed  Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  • Fitzpatrick AWP, Park ST, Zewail AH (2013) Exceptional rigidity and biomechanics of amyloid revealed by 4D electron microscopy. Proc Natl Acad Sci USA 110:10976–10981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fodale V, Kegulian NC, Verani M, Cariulo C, Azzollini L, Petricca L, Daldin M, Boggio R, Padova A, Kuhn R, Pacifici R, Macdonald D, Schoenfeld RC, Park H, Isas JM, Langen R, Weiss A, Caricasole A (2014) Polyglutamine- and temperature-dependent conformational rigidity in mutant huntingtin revealed by immunoassays and circular dichroism spectroscopy. Plos One 9:31

    Article  CAS  Google Scholar 

  • Fung SY, Keyes C, Duhamel J, Chen P (2003) Concentration effect on the aggregation of a self-assembling oligopeptide. Biophys J 85:537–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gademann K, Jaun B, Seebach D, Perozzo R, Scapozza L, Folkers G (1999) Temperature-dependent NMR and CD spectra of β-peptides. On the thermal stability of β-peptide helices. Is the folding process of β-peptides non-cooperative? Helv Chim Acta 82:1–11

    Article  CAS  Google Scholar 

  • Gao J, Wang H, Wang L, Wang J, Kong D, Yang Z (2009) Enzyme promotes the hydrogelation from a hydrophobic small molecule. J Am Chem Soc 131:11286–11287

    Article  CAS  PubMed  Google Scholar 

  • Garrett SL, Poese ME (2013) There’s (still) plenty of room at the bottom. Appl Therm Eng 61:884–888

    Article  Google Scholar 

  • Gazit E (2002) A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J 16:77–83

    Article  CAS  PubMed  Google Scholar 

  • Gazit E (2005) Mechanisms of amyloid fibril self-assembly and inhibition. FEBS J 272:5971–5978

    Article  CAS  PubMed  Google Scholar 

  • Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36:1263–1269

    Article  CAS  PubMed  Google Scholar 

  • Gellman SH (1998) Foldamers: a manifesto. Acc Chem Res 31:173–180

    Article  CAS  Google Scholar 

  • Gilmartin BP, McLaughlin RL, Williams ME (2005) Artificial tripeptide scaffolds for self-assembly of heteromultimetallic structures with tunable electronic and magnetic properties. Chem Mater 17:5446–5454

    Article  CAS  Google Scholar 

  • Giuseppone N (2012) Toward self-constructing materials: a systems chemistry approach. Acc Chem Res 45:2178–2188

    Article  CAS  PubMed  Google Scholar 

  • Glattli A, Seebach D, van Gunsteren WF (2004) Do valine side chains have an influence on the folding behavior of beta-substituted beta-peptides? Helv Chim Acta 87:2487–2506

    Article  CAS  Google Scholar 

  • Gobre VV, Tkatchenko A (2013) Scaling laws for van der Waals interactions in nanostructured materials. Nat Commun 4:6

    Article  Google Scholar 

  • Godballe T, Nilsson LL, Petersen PD, Jenssen H (2011) Antimicrobial β-peptides and α-peptoids. Chem Biol Drug Des 77:107–116

    Article  CAS  PubMed  Google Scholar 

  • Goodman CM, Choi S, Shandler S, DeGrado WF (2007) Foldamers as versatile frameworks for the design and evolution of function. Nat Chem Biol 3:252–262

    Article  CAS  PubMed  Google Scholar 

  • Gopalan RD, Del Borgo MP, Mechler AI, Perlmutter P, Aguilar MI (2015) Geometrically precise building blocks: the self-assembly of β-peptides. Chem Biol 22:1417–1423

    Article  CAS  PubMed  Google Scholar 

  • Gossler-Schofberger R, Hesser G, Muik M, Wechselberger C, Jilek A (2009) An orphan dermaseptin from frog skin reversibly assembles to amyloid-like aggregates in a pH-dependent fashion. FEBS J 276:5849–5859

    Article  PubMed  CAS  Google Scholar 

  • Gratais A, Pannecoucke X, Bouzbouz S (2015) 1,4 Addition of unprotected pyrrole onto chiral acrylamides: toward synthesis of new polypeptidic architectures. Org Biomol Chem 13:1082–1090

    Article  CAS  PubMed  Google Scholar 

  • Greenwald J, Riek R (2012) On the possible amyloid origin of protein folds. J Mol Biol 421:417–426

    Article  CAS  PubMed  Google Scholar 

  • Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605

    Article  CAS  PubMed  Google Scholar 

  • Guillotte M, Nato F, Juillerat A, Hessel A, Marchand F, Lewit-Bentley A, Bentley GA, Vigan-Womas I, Mercereau-Puijalon O (2016) Functional analysis of monoclonal antibodies against the Plasmodium falciparum PfEMP1-VarO adhesin. Malar J 15:16

    Article  CAS  Google Scholar 

  • Gunasekar SK, Haghpanah JS, Montclare JK (2008) Assembly of bioinspired helical protein fibers. Polym Adv Technol 19:454–468

    Article  CAS  Google Scholar 

  • Guthold M, Liu W, Sparks EA, Jawerth LM, Peng L, Falvo M, Superfine R, Hantgan RR, Lord ST (2007) A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers. Cell Biochem Biophys. 49:165–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamley IW (2011) Self-assembly of amphiphilic peptides. Soft Matter 7:4122–4138

    Article  CAS  Google Scholar 

  • Hamley IW (2014) Peptide nanotubes. Angew Chem Int Ed 53:6866–6881

    Article  CAS  Google Scholar 

  • Hamuro Y, Schneider JP, DeGrado WF (1999) De novo design of antibacterial β-peptides. J Am Chem Soc 121:12200–12201

    Article  CAS  Google Scholar 

  • Han TH, Ok T, Kim J, Shin DO, Ihee H, Lee HS, Kim SO (2010) Bionanosphere lithography via hierarchical peptide self-assembly of aromatic triphenylalanine. Small 6:945–951

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, An K, Zhang DW, Yang D (2015) A short helix formed by cyclic beta(2,3)-aminoxy peptides in protic solvents. Chem Asian J 10:2126–2129

    Article  CAS  PubMed  Google Scholar 

  • Hartgerink JD (2004) Covalent capture: a natural complement to self-assembly. Curr Opin Chem Biol 8:604–609

    Article  CAS  PubMed  Google Scholar 

  • Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688

    Article  CAS  PubMed  Google Scholar 

  • Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA 99:5133–5138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser CAE, Deng RS, Mishra A, Loo YH, Khoe U, Zhuang FR, Cheong DW, Accardo A, Sullivan MB, Riekel C, Ying JY, Hauser UA (2011) Natural tri- to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures. Proc Natl Acad Sci USA 108:1361–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser CAE, Maurer-Stroh S, Martins IC (2014) Amyloid-based nanosensors and nanodevices. Chem Soc Rev 43:5326–5345

    Article  CAS  PubMed  Google Scholar 

  • He B, Yuan X, Jiang DM (2014) Molecular self-assembly guides the fabrication of peptide nanofiber scaffolds for nerve repair. RSC Advances 4:23610–23621

    Article  CAS  Google Scholar 

  • Henzie J, Barton JE, Stender CL, Odom TW (2006) Large-area nanoscale patterning: chemistry meets fabrication. Acc Chem Res 39:249–257

    Article  CAS  PubMed  Google Scholar 

  • Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8:562–573

    Article  CAS  PubMed  Google Scholar 

  • Heyduk E, Moxley MM, Salvatori A, Corbett JA, Heyduk T (2010) Homogeneous insulin and C-peptide sensors for rapid assessment of insulin and C-peptide secretion by the islets. Diabetes 59:2360–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higashi N, Koga T (2008) Self-assembled peptide nanofibers. Adv Polym Sci 219:27–68

    CAS  Google Scholar 

  • Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS (2001) A field guide to foldamers. Chem Rev 101:3893–4011

    Article  CAS  PubMed  Google Scholar 

  • Hobza P, Zahradnik R, Muller-Dethlefs K (2006) The world of non-covalent interactions: 2006. Collect Czech Chem Commun 71:443–531

    Article  CAS  Google Scholar 

  • Holmes TC, de Lacalle S, Su X, Liu GS, Rich A, Zhang SG (2000) Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci USA 97:6728–6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Pritzker MD, Legge RL, Chen P (2005) Effect of NaCl and peptide concentration on the self-assembly of an ionic-complementary peptide EAK16-II. Colloids Surf B 46:152–161

    Article  CAS  Google Scholar 

  • Horne WS (2015) Foldamers Biomimetic and built to order. Nat Chem 7:858–859

    Article  CAS  PubMed  Google Scholar 

  • Huang ZH, Che SN (2015) Fabrication of Chiral materials via self-assembly and biomineralization of peptides. Chem Rec 15:665–674

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Duan XF, Wei QQ, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291:630–633

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Sargeant TD, Hulvat JF, Mata A, Bringas P, Koh CY, Stupp SI, Snead ML (2008) Bioactive nanofibers instruct cells to proliferate and differentiate during enamel regeneration. J Bone Miner Res:231995–232006

    Google Scholar 

  • Huang Z, Newcomb CJ, Bringas P, Stupp SI, Snead ML (2010) Biological synthesis of tooth enamel instructed by an artificial matrix. Biomaterials 31:9202–9211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang RL, Wang YF, Qi W, Su RX, He ZM (2014) Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires. Nanoscale Res Lett 9:9

    Article  CAS  Google Scholar 

  • Imperiali B, McDonnell KA, Shogren-Knaak M (1999) Design and construction of novel peptides and proteins by tailored incorporation of coenzyme functionality. Top Curr Chem 202:1–38

    Article  CAS  Google Scholar 

  • Invernizzi G, Papaleo E, Sabate R, Ventura S (2012) Protein aggregation: mechanisms and functional consequences. Int J Biochem Cell Biol 44:1541–1554

    Article  CAS  PubMed  Google Scholar 

  • Ishihara Y, Kimura S (2010) Nanofiber formation of amphiphilic cyclic tri-beta-peptide. J Pept Sci 16:110–114

    Article  CAS  PubMed  Google Scholar 

  • Israelachvili JN (2011) Intermolecular and surface forces: Revised third edition. Academic, San Diego

    Google Scholar 

  • Izquierdo S, Kogan MJ, Parella T, Moglioni AG, Branchadell V, Giralt E, Ortuno RM (2004) 14-helical folding in a cyclobutane-containing β-tetrapeptide. J Org Chem 69:5093–5099

    Article  CAS  PubMed  Google Scholar 

  • Jadhav SV, Misra R, Gopi HN (2014) Foldamers to nanotubes: influence of amino acid side chains in the hierarchical assembly of α,γ4-hybrid peptide helices. Chem Eur J 20:16523–16528

    Article  CAS  PubMed  Google Scholar 

  • Jiang YG, Wang ZQ, Yu X, Shi F, Xu HP, Zhang X, Smet M, Dehaen W (2005) Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces. Langmuir 21:1986–1990

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Xu XD, Chen CS, Cheng SX, Zhang XZ, Zhuo RX (2008) Bioactive amphiphilic peptide derivatives with pH triggered morphology and structure. Macromol Rapid Commun 29:1726–1731

    Article  CAS  Google Scholar 

  • Joo JY, Amin ML, Rajangam T, An SSA (2015) Fibrinogen as a promising material for various biomedical applications. Mol Cell Toxicol 11:1–9

    Article  CAS  Google Scholar 

  • Ju HX (2011) Sensitive biosensing strategy based on functional nanomaterials. Sci China Chem 54:1202–1217

    Article  CAS  Google Scholar 

  • Jun S, Hong Y, Imamura H, Ha BY, Bechhoefer J, Chen P (2004) Self-assembly of the ionic peptide EAK16: the effect of charge distributions on self-assembly. Biophys J 87:1249–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kar T, Mukherjee S, Das PK (2014) Organogelation through self-assembly of low-molecular-mass amphiphilic peptide. New J Chem 38:1158–1167

    Article  CAS  Google Scholar 

  • Kim J, Kwon S, Kim SH, Lee CK, Lee JH, Cho SJ, Lee HS, Ihee H (2012) Microtubes with rectangular cross-section by self-assembly of a short β-peptide foldamer. J Am Chem Soc 134:20573–20576

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kim JH, Lee JS, Park CB (2015) β-sheet-forming, self-assembled peptide nanomaterials towards optical, energy, and healthcare applications. Small 11:3623–3640

    Article  CAS  PubMed  Google Scholar 

  • Kirshenbaum K, Zuckermann RN, Dill KA (1999) Designing polymers that mimic biomolecules. Curr Opin Struct Biol 9:530–535

    Article  CAS  PubMed  Google Scholar 

  • Klinker K, Barz M (2015) Polypept(o)ides: hybrid systems based on polypeptides and polypeptoids. Macromol Rapid Commun 36:1943–1957

    Article  CAS  PubMed  Google Scholar 

  • Klosterman JK, Yamauchi Y, Fujita M (2009) Engineering discrete stacks of aromatic molecules. Chem Soc Rev 38:1714–1725

    Article  CAS  PubMed  Google Scholar 

  • Koehler JM (2015) What are proteins teaching us on fundamental strategies for molecular nanotechnology? Nanotechnol Rev 4:145–160

    Article  CAS  Google Scholar 

  • Koga T, Matsui H, Matsumoto T, Higashi N (2011) Shape-specific nanofibers via self-assembly of three-branched peptide. J Colloid Interface Sci 358:81–85

    Article  CAS  PubMed  Google Scholar 

  • Koide T, Homma DL, Asada S, Kitagawa K (2005) Self-complementary peptides for the formation of collagen-like triple helical supramolecules. Biorg Med Chem Lett 15:5230–5233

    Article  CAS  Google Scholar 

  • Kopecek J (2003) Smart and genetically engineered biomaterials and drug delivery systems. Eur J Pharm Sci 20:1–16

    Article  CAS  PubMed  Google Scholar 

  • Kopecek J, Yang JY (2009) Peptide-directed self-assembly of hydrogels. Acta Biomater 5:805–816

    Article  CAS  PubMed  Google Scholar 

  • Kortelainen M, Suhonen A, Hamza A, Papai I, Nauha E, Yliniemela-Sipari S, Nissinen M, Pihko PM (2015) Folding patterns in a family of oligoamide foldamers. Chem Eur J 21:9493–9504

    Article  CAS  PubMed  Google Scholar 

  • Koutsopoulos S (2016) Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: progress, design guidelines, and applications. J Biomed Mater Res A 104:1002–1016

    Article  CAS  PubMed  Google Scholar 

  • Krauthauser S, Christianson LA, Powell DR, Gellman SH (1997) Antiparallel sheet formation in β-peptide foldamers: Effects of β-amino acid substitution on conformational preference. J Am Chem Soc 119:11719–11720

    Article  Google Scholar 

  • Kritzer JA, Tirado-Rives J, Hart SA, Lear JD, Jorgensen WL, Schepartz A (2005) Relationship between side chain structure and 14-helix stability of β(3)-peptides in water. J Am Chem Soc 127:167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krysmann MJ, Castelletto V, McKendrick JE, Clifton LA, Hamley IW, Harris PJF, King SA (2008) Self-assembly of peptide nanotubes in an organic solvent. Langmuir 24:8158–8162

    Article  CAS  PubMed  Google Scholar 

  • Kumar RJ, MacDonald JM, Singh TB, Waddington LJ, Holmes AB (2011) Hierarchical Self-assembly of semiconductor functionalized peptide alpha-helices and optoelectronic properties. J Am Chem Soc 133:8564–8573

    Article  CAS  PubMed  Google Scholar 

  • Kwon S, Jeon A, Yoo SH, Chung IS, Lee HS (2010) Unprecedented molecular architectures by the controlled self-assembly of a β-peptide foldamer. Angew Chem Int Ed 49:8232–8236

    Article  CAS  Google Scholar 

  • Lakshmanan A, Zhang SG, Hauser CAE (2012) Short self-assembling peptides as building blocks for modern nanodevices. Trends Biotechnol 30:155–165

    Article  CAS  PubMed  Google Scholar 

  • Langenhan JM, Guzei IA, Gellman SH (2003) Parallel sheet secondary structure in β-peptides. Angew Chem Int Ed 42:2402–2405

    Article  CAS  Google Scholar 

  • Laursen JS, Engel-Andreasen J, Fristrup P, Harris P, Olsen CA (2013) Cis-trans amide bond rotamers in β-peptoids and peptoids: evaluation of stereoelectronic effects in backbone and side chains. J Am Chem Soc 135:2835–2844

    Article  CAS  PubMed  Google Scholar 

  • Laursen JS, Engel-Andreasen J, Olsen CA (2015) β-peptoid foldamers at last. Acc Chem Res 48:2696–2704

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22

    Article  CAS  PubMed  Google Scholar 

  • Lee MR, Raguse TL, Schinnerl M, Pomerantz WC, Wang XD, Wipf P, Gellman SH (2007) Origins of the high 14-helix propensity of cyclohexyl-rigidified residues in β-peptides. Org Lett 9:1801–1804

    Article  CAS  PubMed  Google Scholar 

  • Lee CS, Lin CH, Hsieh WL, Chiao SM, Tung WC (2014) Self-assembling of peptides is tuned via an extended amphipathic helix. J Nanosci Nanotechnol 14:5568–5573

    Article  CAS  PubMed  Google Scholar 

  • Leggett GJ (2006) Scanning near-field photolithography-surface photochemistry with nanoscale spatial resolution. Chem Soc Rev 35:1150–1161

    Article  CAS  PubMed  Google Scholar 

  • Lehn JM (2004) Supramolecular chemistry: from molecular information towards self-organization and complex matter. Rep Prog Phys 67:249–265

    Article  Google Scholar 

  • Leikin S, Rau DC, Parsegian VA (1995) Temperature-favored assembly of collagen is driven by hydrophilic not hydrphobic interactions. Nat Struct Biol 2:205–210

    Article  CAS  PubMed  Google Scholar 

  • Lelais G, Seebach D (2004) β2-amino acids – syntheses, occurrence in natural products, and components of β-peptides. Biopolymers 76:206–243

    Article  CAS  PubMed  Google Scholar 

  • LePlae PR, Fisk JD, Porter EA, Weisblum B, Gellman SH (2002) Tolerance of acyclic residues in the β-peptide 12-helix: access to diverse side-chain arrays for biological applications. J Am Chem Soc 124:6820–6821

    Article  CAS  PubMed  Google Scholar 

  • Levin A, Mason TO, Adler-Abramovich L, Buell AK, Meisl G, Galvagnion C, Bram Y, Stratford SA, Dobson CM, Knowles TPJ, Gazit E (2014) Ostwald’s rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nat Commun 5:8

    Article  CAS  Google Scholar 

  • Li X, Yang D (2006) Peptides of aminoxy acids as foldamers. Chem Commun:3367–3379

    Google Scholar 

  • Li Y, Yu SM (2013) Targeting and mimicking collagens via triple helical peptide assembly. Curr Opin Chem Biol 17:968–975

    Article  CAS  PubMed  Google Scholar 

  • Liu YD, Goebl J, Yin YD (2013) Templated synthesis of nanostructured materials. Chem Soc Rev 42:2610–2653

    Article  CAS  PubMed  Google Scholar 

  • Lombardo D, Kiselev MA, Magazu S, Calandra P (2015) Amphiphiles self-assembly: Basic concepts and future perspectives of supramolecular approaches. Adv Cond Matter Phys 2015

    Google Scholar 

  • London F (1937) The general theory of molecular forces. Trans Faraday Society 33:8–26

    Article  CAS  Google Scholar 

  • Loo Y, Zhang SG, Hauser CAE (2012) From short peptides to nanofibers to macromolecular assemblies in biomedicine. Biotechnol Adv 30:593–603

    Article  CAS  PubMed  Google Scholar 

  • Lowik DWPM, Leunissen EHP, van den Heuvel M, Hansen MB, van Hest JCM (2010) Stimulus responsive peptide based materials. Chem Soc Rev 39:3394–3412

    Article  PubMed  CAS  Google Scholar 

  • Luder K, Kulkarni K, Lee HW, Widdop RE, Del Borgo MP, Aguilar MI (2016) Decorated self-assembling β3-tripeptide foldamers form cell adhesive scaffolds. Chem. Commun 52:4549–4552

    Article  CAS  Google Scholar 

  • Luo D, Yan C, Wang T (2015) Interparticle forces underlying nanoparticle self-assemblies. Small 11:5984–6008

    Article  CAS  PubMed  Google Scholar 

  • Lupas A (1996) Coiled coils: new structures and new functions. Trends Biochem Sci 21:375–382

    Article  CAS  PubMed  Google Scholar 

  • Ma ML, Kuang Y, Gao Y, Zhang Y, Gao P, Xu B (2010) Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. J Am Chem Soc 132:2719–2728

    Article  CAS  PubMed  Google Scholar 

  • MacEwan SR, Chilkoti A (2014) Applications of elastin-like polypeptides in drug delivery. J. Contrl Release 190:314–330

    Article  CAS  Google Scholar 

  • MacPhee CE, Woolfson DN (2004) Engineered and designed peptide-based fibrous biomaterials. Curr Opin Solid State Mater Sci 8:141–149

    Article  CAS  Google Scholar 

  • Majd S, Power JH, Grantham HJM (2015) Neuronal response in Alzheimer’s and Parkinson’s disease: The effect of toxic proteins on intracellular pathways. BMC Neurosci 16:13

    Article  CAS  Google Scholar 

  • Mandal D, Shirazi AN, Parang K (2014) Self-assembly of peptides to nanostructures. Org Biomol Chem 12:3544–3561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann S (2009) Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat Mater 8:781–792

    Article  CAS  PubMed  Google Scholar 

  • Mano JF (2008) Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater 10:515–527

    Article  CAS  Google Scholar 

  • Mart RJ, Osborne RD, Stevens MM, Ulijn RV (2006) Peptide-based stimuli-responsive biomaterials. Soft Matter 2:822–835

    Article  CAS  Google Scholar 

  • Martinek TA, Fulop F (2003) Side-chain control of β-peptide secondary structures – Design principles. Eur J Biochem 270:3657–3666

    Article  CAS  PubMed  Google Scholar 

  • Martinek TA, Fulop F (2012) Peptidic foldamers: ramping up diversity. Chem Soc Rev 41:687–702

    Article  CAS  PubMed  Google Scholar 

  • Mata A, Geng YB, Henrikson KJ, Aparicio C, Stock SR, Satcher RL, Stupp SI (2010) Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials 31:6004–6012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuurua K (2014) Rational design of self-assembled proteins and peptides for nano- and micro-sized architectures. RSC Adv 4:2942–2953

    Article  CAS  Google Scholar 

  • Mattia E, Otto S (2015) Supramolecular systems chemistry. Nat Nanotechnol 10:111–119

    Article  CAS  PubMed  Google Scholar 

  • McDonald CA, Payne NL, Sun GZ, Clayton DJ, Del Borgo MP, Aguilar MI, Perlmutter P, Bernard CCA (2014) Single β3-amino acid substitutions to MOG peptides suppress the development of experimental autoimmune encephalomyelitis. J Neuroimmunol 277:67–76

    Article  CAS  PubMed  Google Scholar 

  • McGovern M, Abbott N, de Pablo JJ (2012) Dimerization of helical β-peptides in solution. Biophys J 102:1435–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes AC, Baran ET, Reis RL, Azevedo HS (2013) Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:582–612

    Article  CAS  PubMed  Google Scholar 

  • Minor DL, Kim PS (1994) Measurment of the β-sheet-forming propensities of amino-acids. Nature 367:660–663

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Loo YH, Deng RH, Chuah YJ, Hee HT, Ying JY, Hauser CAE (2011) Ultrasmall natural peptides self-assemble to strong temperature-resistant helical fibers in scaffolds suitable for tissue engineering. Nano Today 6:232–239

    Article  CAS  Google Scholar 

  • Mohle K, Gunther R, Thormann M, Sewald N, Hofmann HJ (1999) Basic conformers in β-peptides. Biopolymers 50:167–184

    Article  CAS  PubMed  Google Scholar 

  • Mondal J, Sung BJ, Yethiraj A (2010a) Sequence dependent self-assembly of β-peptides: insights from a coarse-grained model. J Chem Phys 132:7

    Google Scholar 

  • Mondal J, Zhu X, Cui QA, Yethiraj A (2010b) Self-Assembly of β-peptides: insight from the pair and many-body free energy of association. J Phys Chem C 114:13551–13556

    Article  CAS  Google Scholar 

  • Mondal J, Zhu X, Cui QA, Yethiraj A (2010c) Sequence-dependent interaction of β-peptides with membranes. J Phys Chem B 114:13585–13592

    Article  CAS  PubMed  Google Scholar 

  • Monera OD, Sereda TJ, Zhou NE, Kay CM, Hodges RS (1995) Relationship of sidechain hydrophobicity and α-helical propensity on the stability of the single-stranded amphipathic α-helix. J Pept Sci 1:319–329

    Article  CAS  PubMed  Google Scholar 

  • Mora T, Yu H, Sowa Y, Wingreen NS (2009) Steps in the bacterial flagellar motor. PLoS Comp Biol 5:11

    Article  CAS  Google Scholar 

  • Moreau A, Gosselin-Badaroudine P, Chahine M (2014) Molecular biology and biophysical properties of ion channel gating pores. Q Rev Biophys 47:364–388

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Doi M, Kudo K, Terauchi Y (1986) Conformations in the solid-state and solubility properties of protected homooligopeptides of glycine and β-alanine. Bull Chem Soc Jpn 59:3553–3557

    Article  CAS  Google Scholar 

  • Nesloney CL, Kelly JW (1996) Progress towards understanding β-sheet structure. Biorg Med Chem 4:739–766

    Article  CAS  Google Scholar 

  • Nguyen LTH, Chen SL, Elumalai NK, Prabhakaran MP, Zong Y, Vijila C, Allakhverdiev SI, Ramakrishna S (2013) Biological, chemical, and electronic applications of nanofibers. Macromol Mater Eng 298:822–867

    Article  CAS  Google Scholar 

  • Niece KL, Hartgerink JD, Donners J, Stupp SI (2003) Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J Am Chem Soc 125:7146–7147

    Article  CAS  PubMed  Google Scholar 

  • Niggli DA, Ebert MO, Lin ZX, Seebach D, van Gunsteren WF (2012) Helical content of a β3-octapeptide in methanol: molecular dynamics simulations explain a seeming discrepancy between conclusions derived from CD and NMR data. Chem Eur J 18:586–593

    Article  CAS  PubMed  Google Scholar 

  • Nikolic A, Baud S, Rauscher S, Pomes R (2011) Molecular mechanism of β-sheet self-organization at water-hydrophobic interfaces. Proteins 79:1–22

    Article  CAS  PubMed  Google Scholar 

  • Norgren AS, Zhang SD, Arvidsson PI (2006) Synthesis and circular dichroism spectroscopic investigations of oligomeric β-peptoids with α-chiral side chains. Org Lett 8:4533–4536

    Article  CAS  PubMed  Google Scholar 

  • Numata K (2015) Poly(amino acid)s/polypeptides as potential functional and structural materials. Polym J 47:537–545

    Article  CAS  Google Scholar 

  • Olsen CA (2010) Peptoid-peptide hybrid backbone architectures. ChemBioChem 11:152–160

    Article  CAS  PubMed  Google Scholar 

  • Olsen CA, Lambert M, Witt M, Franzyk H, Jaroszewski JW (2008) Solid-phase peptide synthesis and circular dichroism study of chiral β-peptoid homooligomers. Amino Acids 34:465–471

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan S, Baldwin RL (1991) Straight-chain nonpolar amino-acids are good helix-formers in water. J Mol Biol 219:135–137

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan S, Marqusee S, Ridgeway T, Laue TM, Baldwin RL (1990) Relative helix-forming tendencies of nonpolar amino-acids. Nature 344:268–270

    Article  CAS  PubMed  Google Scholar 

  • Pagel K, Koksch B (2008) Following polypeptide folding and assembly with conformational switches. Curr Opin Chem Biol 12:730–739

    Article  CAS  PubMed  Google Scholar 

  • Pandya MJ, Spooner GM, Sunde M, Thorpe JR, Rodger A, Woolfson DN (2000) Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis. Biochemistry 39:8728–8734

    Article  CAS  PubMed  Google Scholar 

  • Paramonov SE, Jun HW, Hartgerink JD (2006) Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 128:7291–7298

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kwon TG, Lee SY (2013) Controlled self-assembly and alignment of organic-magnetic hybrid microrods. Powder Technol 250:46–51

    Article  CAS  Google Scholar 

  • Pasini D, Kraft A (2004) Supramolecular self-assembly of fibres. Curr Opin Solid State Mater Sci 8:157–163

    Article  CAS  Google Scholar 

  • Patch JA, Barron AE (2002) Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Curr Opin Chem Biol 6:872–877

    Article  CAS  PubMed  Google Scholar 

  • Pizzey CL, Pomerantz WC, Sung BJ, Yuwono VM, Gellman SH, Hartgerink JD, Yethiraj A, Abbott NL (2008) Characterization of nanofibers formed by self-assembly of β-peptide oligomers using small angle x-ray scattering. J Chem Phys 129:8

    Article  CAS  Google Scholar 

  • Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de Novo designed peptide. J Am Chem Soc 125:11802–11803

    Article  CAS  PubMed  Google Scholar 

  • Pomerantz WC, Yuwono VM, Pizzey CL, Hartgerink JD, Abbott NL, Gellman SH (2008) Nanofibers and lyotropic liquid crystals from a class of self-assembling β-peptides. Angew Chem Int Ed 47:1241–1244

    Article  CAS  Google Scholar 

  • Porter EA, Wang XF, Schmitt MA, Gellman SH (2002) Synthesis and 12-helical secondary structure of β-peptides containing (2R,3R)-aminoproline. Org Lett 4:3317–3319

    Article  CAS  PubMed  Google Scholar 

  • Prins LJ, Reinhoudt DN, Timmerman P (2001) Noncovalent synthesis using hydrogen bonding. Angew Chem Int Ed 40:2382–2426

    Article  CAS  Google Scholar 

  • Profit AA, Felsen V, Chinwong J, Mojica ERE, Desamero RZB (2013) Evidence of π-stacking interactions in the self-assembly of hIAPP22-29. Proteins 81:690–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin SY, Xu XD, Chen CS, Chen JX, Li ZY, Zhuo RX, Zhang XZ (2011) Supramolecular architectures self-assembled from asymmetrical hetero cyclopeptides. Macromol Rapid Commun 32:758–764

    Article  PubMed  CAS  Google Scholar 

  • Qin SY, Xu SS, Zhuo RX, Zhang XZ (2012) Morphology transformation via pH-triggered self-assembly of peptides. Langmuir 28:2083–2090

    Article  CAS  PubMed  Google Scholar 

  • Qiu F, Chen YZ, Zhao XJ (2009) Comparative studies on the self-assembling behaviors of cationic and catanionic surfactant-like peptides. J Colloid Interface Sci 336:477–484

    Article  CAS  PubMed  Google Scholar 

  • Quandt A, Ozdogan C (2010) Feynman, biominerals and graphene – Basic aspects of nanoscience. Commun Nonlinear Sci Numer Simulat 15:1575–1582

    Article  Google Scholar 

  • Quantock AJ, Winkler M, Parfitt GJ, Young RD, Brown DJ, Boote C, Jester JV (2015) From nano to macro: studying the hierarchical structure of the corneal extracellular matrix. Exp Eye Res 133:81–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rad-Malekshahi M, Lempsink L, Amidi M, Hennink WE, Mastrobattista E (2016) Biomedical applications of self-assembling peptides. Bioconj Chem 27:3–18

    Article  CAS  Google Scholar 

  • Raguse TL, Lai JR, LePlae PR, Gellman SH (2001) Toward β-peptide tertiary structure: self-association of an amphiphilic 14-helix in aqueous solution. Org Lett 3:3963–3966

    Article  CAS  PubMed  Google Scholar 

  • Raguse TL, Lai JR, Gellman SH (2002a) Evidence that the β-peptide 14-helix is stabilized by β3-residues with side-chain branching adjacent to the β-carbon atom. Helv Chim Acta 85:4154–4164

    Article  CAS  Google Scholar 

  • Raguse TL, Porter EA, Weisblum B, Gellman SH (2002b) Structure-activity studies of 14-helical antimicrobial β-peptides: probing the relationship between conformational stability and antimicrobial potency. J Am Chem Soc 124:12774–12785

    Article  CAS  PubMed  Google Scholar 

  • Raguse TL, Lai JR, Gellman SH (2003) Environment-independent 14-helix formation in short β-peptides: striking a balance between shape control and functional diversity. J Am Chem Soc 125:5592–5593

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal K, Schneider JP (2004) Self-assembling peptides and proteins for nanotechnological applications. Curr Opin Struct Biol 14:480–486

    Article  CAS  PubMed  Google Scholar 

  • Ralston E, De Coen JL (1974) Folding of polypeptide chains induced by the amino acid side-chains. J Mol Biol 83:393–420

    Article  CAS  PubMed  Google Scholar 

  • Ramstrom O, Bunyapaiboonsri T, Lohmann S, Lehn JM (2002) Chemical biology of dynamic combinatorial libraries. Biochim Biophys Acta 1572:178–186

    Article  CAS  PubMed  Google Scholar 

  • Rasale DB, Das AK (2015) Chemical reactions directed peptide self-assembly. Int J Mol Sci 16:10797–10820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627

    Article  CAS  PubMed  Google Scholar 

  • Reches M, Gazit E (2004) Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett 4:581–585

    Article  CAS  Google Scholar 

  • Reimers K, Liebsch C, Radtke C, Kuhbier JW, Vogt PM (2015) Silks as scaffolds for skin reconstruction. Biotechnol Bioeng 112:2201–2205

    Article  CAS  PubMed  Google Scholar 

  • Reyes FT, Kelland MA, Kumar N, Jia L (2015) First Investigation of the kinetic hydrate inhibition of a series of poly(β-peptoid)s on structure II gas hydrate, including the comparison of block and random copolymers. Energy Fuels 29:695–701

    Article  CAS  Google Scholar 

  • Rissanou AN, Georgilis E, Kasotaids E, Mitraki A, Harmandaris V (2013) Effect of solvent on the self-assembly of dialanine and diphenylalanine peptides. J Phys Chem B 117:3962–3975

    Article  CAS  PubMed  Google Scholar 

  • Robinson JA (2011) Protein epitope mimetics as anti-infectives. Curr Opin Chem Biol 15:379–386

    Article  CAS  PubMed  Google Scholar 

  • Rodnikova MN (2007) A new approach to the mechanism of solvophobic interactions. J Mol Liq 136:211–213

    Article  CAS  Google Scholar 

  • Rodnikova M, Barthel J (2007) Elasticity of the spatial network of hydrogen bonds in liquids and solutions. J Mol Liq 131:121–123

    Article  CAS  Google Scholar 

  • Roy O, Faure S, Thery V, Didierjean C, Taillefumier C (2008) Cyclic β-peptoids. Org Lett 10:921–924

    Article  CAS  PubMed  Google Scholar 

  • Rueping M, Schreiber JV, Lelais G, Jaun B, Seebach D (2002) Mixed β 2 3-hexapeptides and β 2 3-nonapeptides folding to (P)-helices with alternating twelve- and ten-membered hydrogen-bonded rings. Helv Chim Acta 85:2577–2593

    Article  CAS  Google Scholar 

  • Rueping M, Mahajan YR, Jaun B, Seebach D (2004) Design, synthesis and structural investigations of a β-peptide forming a 314-helix stabilized by electrostatic interactions. Chem Eur J 10:1607–1615

    Article  CAS  PubMed  Google Scholar 

  • Russell VA, Ward MD (1996) Molecular crystals with dimensionally controlled hydrogen-bonded nanostructures. Chem Mater 8:1654–1666

    Article  CAS  Google Scholar 

  • Rybtchinski B (2011) Adaptive supramolecular nanomaterials based on strong noncovalent interactions. ACS Nano 5:6791–6818

    Article  CAS  PubMed  Google Scholar 

  • Ryu J, Park CB (2008) High-temperature self-assembly of peptides into vertically well-aligned nanowires by aniline vapor. Adv Mater 20:3754–3758

    Article  CAS  Google Scholar 

  • Ryu JH, Hong DJ, Lee M (2008) Aqueous self-assembly of aromatic rod building blocks. Chem Commun:1043–1054

    Google Scholar 

  • Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, Stupp SI (2008) Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials 29:161–171

    Article  CAS  PubMed  Google Scholar 

  • Scanlon S, Aggeli A (2008) Self-assembling peptide nanotubes. Nano Today 3:22–30

    Article  CAS  Google Scholar 

  • Schaller V, Schmoller KM, Karakose E, Hammerich B, Maier M, Bausch AR (2013) Crosslinking proteins modulate the self-organization of driven systems. Soft Matter 9:7229–7233

    Article  CAS  Google Scholar 

  • Scholtz JM, Baldwin RL (1992) The mechanism of α-helix formation by peptides. Annu Rev Biophys Biomol Struct 21:95–118

    Article  CAS  PubMed  Google Scholar 

  • Scott RW, DeGrado WF, Tew GN (2008) De novo designed synthetic mimics of antimicrobial peptides. Curr Opin Biotechnol 19:620–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seabra AB, Duran N (2013) Biological applications of peptides nanotubes: an overview. Peptides 39:47–54

    Article  CAS  PubMed  Google Scholar 

  • Seebach D, Gardiner J (2008) β-peptidic peptidomimetics. Acc Chem Res 41:1366–1375

    Article  CAS  PubMed  Google Scholar 

  • Seebach D, Matthews JL (1997) β-peptides: a surprise at every turn. Chem Commun 2015–2022

    Google Scholar 

  • Seebach D, Ciceri PE, Overhand M, Jaun B, Rigo D, Oberer L, Hommel U, Amstutz R, Widmer H (1996) Probing the helical secondary structure of short-chain β-peptides. Helv Chim Acta 79:2043–2066

    Article  CAS  Google Scholar 

  • Seebach D, Gademann K, Schreiber JV, Matthews JL, Hintermann T, Jaun B, Oberer L, Hommel U, Widmer H (1997) ‘Mixed’ β-peptides: a unique helical secondary structure in solution. Helv Chim Acta 80:2033–2038

    Article  CAS  Google Scholar 

  • Seebach D, Abele S, Gademann K, Guichard G, Hintermann T, Jaun B, Matthews JL, Schreiber JV (1998) β2- and β3-peptides with proteinaceous side chains: synthesis and solution structures of constitutional isomers, a novel helical secondary structure and the influence of solvation and hydrophobic interactions on folding. Helv Chim Acta 81:932–982

    Article  CAS  Google Scholar 

  • Seebach D, Beck AK, Bierbaum DJ (2004) The world of β- and γ-peptides comprised of homologated proteinogenic amino acids and other components. Chem Biodivers 1:1111–1239

    Article  CAS  PubMed  Google Scholar 

  • Seebach D, Hook DF, Glattli A (2006) Helices and other secondary structures of β- and γ-peptides. Biopolymers 84:23–37

    Article  CAS  PubMed  Google Scholar 

  • Seoudi RS, Del Borgo MP, Kulkarni K, Perlmutter P, Aguilar MI, Mechler A (2015a) Supramolecular self-assembly of 14-helical nanorods with tunable linear and dendritic hierarchical morphologies. New J Chem 39:3280–3287

    Article  CAS  Google Scholar 

  • Seoudi RS, Dowd A, Del Borgo M, Kulkarni K, Perlmutter P, Aguilar MI, Mechler A (2015b) Amino acid sequence controls the self-assembled superstructure morphology of N-acetylated tri-β3-peptides. Pure Appl Chem 87:1021–1028

    Article  CAS  Google Scholar 

  • Seoudi RS, Dowd A, Smith BJ, Mechler A (2016a) Structural analysis of bioinspired nano materials with synchrotron far IR spectroscopy. Phys Chem Chem Phys 18:11467–11473

    Article  CAS  PubMed  Google Scholar 

  • Seoudi RS, Hinds MG, Wilson DJD, Adda CG, Del Borgo M, Aguilar MI, Perlmutter P, Mechler A (2016b) Self-assembled nanomaterials based on beta 3 ) tetrapeptides. Nanotechnology 27:9

    Article  CAS  Google Scholar 

  • Seow WY, Hauser CAE (2014) Short to ultrashort peptide hydrogels for biomedical uses. Mater Today 17:381–388

    Article  CAS  Google Scholar 

  • Shao H, Seifert J, Romano NC, Gao M, Helmus JJ, Jaroniec CP, Modarelli DA, Parquette JR (2010) Amphiphilic self-assembly of an n-type nanotube. Angew Chem Int Ed 49:7688–7691

    Article  CAS  Google Scholar 

  • Shen Y, Fu XH, Fu WX, Li ZB (2015) Biodegradable stimuli-responsive polypeptide materials prepared by ring opening polymerization. Chem Soc Rev 44:612–622

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T (2003) Bottom-up synthesis and morphological control of high-axial-ratio nanostructures through molecular self-assembly. Polym J 35:1–22

    Article  Google Scholar 

  • Shimomura M, Sawadaishi T (2001) Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci 6:11–16

    Article  CAS  Google Scholar 

  • Shu LH, Ueda K, Chiu I, Cheong H (2011) Biologically inspired design. Cirp Ann Manuf Techn 60:673–693

    Article  Google Scholar 

  • Shuvaev VV, Brenner JS, Muzykantov VR (2015) Targeted endothelial nanomedicine for common acute pathological conditions. J Control Release 219:576–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sijbesma RP, Meijer EW (1999) Self-assembly of well-defined structures by hydrogen bonding. Curr Opin Colloid Interface Sci 4:24–32

    Article  CAS  Google Scholar 

  • Skovbakke SL, Larsen CJ, Heegaard PMH, Moesby L, Franzyk H (2015) Lipidated α-peptide/β-peptoid hybrids with potent anti-inflammatory activity. J Med Chem 58:801–813

    Article  CAS  PubMed  Google Scholar 

  • Smith CK, Regan L (1997) Construction and design of β-sheets. Acc Chem Res 30:153–161

    Article  CAS  Google Scholar 

  • Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett 77:1399–1401

    Article  CAS  Google Scholar 

  • Solar M, Buehler MJ (2014) Tensile deformation and failure of amyloid and amyloid-like protein fibrils. Nanotechnology 25

    Google Scholar 

  • Srivastava R, Ray AK, Diederichsen U (2009) Higher aggregation of β-peptide networks controlled by nucleobase pairing. Eur J Org Chem 4793–4800

    Google Scholar 

  • Stahl PJ, Yu SM (2012) Encoding cell-instructive cues to PEG-based hydrogels via triple helical peptide assembly. Soft Matter 8:10409–10418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Standley SM, Toft DJ, Cheng H, Soukasene S, Chen J, Raja SM, Band V, Band H, Cryns VL, Stupp SI (2010) Induction of cancer cell death by self-assembling nanostructures incorporating a cytotoxic peptide. Cancer Res 70:3020–3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steer DL, Lew RA, Perlmutter P, Smith AI, Aguilar MI (2002) β-amino acids: Versatile peptidomimetics. Curr Med Chem 9:811–822

    Article  CAS  PubMed  Google Scholar 

  • Stendahl JC, Rao MS, Guler MO, Stupp SI (2006) Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv Funct Mater 16:499–508

    Article  CAS  Google Scholar 

  • Stephanopoulos N, Ortony JH, Stupp SI (2013) Self-assembly for the synthesis of functional biomaterials. Acta Mater 61:912–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens OM, Kim S, Welch BD, Hodsdon ME, Kay MS, Schepartz A (2005) Inhibiting HIV fusion with a β-peptide foldamer. J Am Chem Soc 127:13126–13127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoop R (2008) Smart biomaterials for tissue engineering of cartilage. Injury 39:S77–S87

    Article  PubMed  Google Scholar 

  • Strijowski U, Sewald N (2004) Structural properties of cyclic peptides containing cis- or trans-2-aminocyclohexane carboxylic acid. Org Biomol Chem 2:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Stupp SI, Donners J, Li LS, Mata A (2005) Expanding frontiers in biomaterials. MRS Bull 30:864–873

    Article  CAS  Google Scholar 

  • Stupp SI, Zha RH, Palmer LC, Cui HG, Bitton R (2013) Self-assembly of biomolecular soft matter. Faraday Discuss 166:9–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su K, Wang CM (2015) Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 37:2139–2145

    Article  CAS  PubMed  Google Scholar 

  • Subramanian R, Kapoor TM (2012) Building complexity: insights into self-organized assembly of microtubule-based architectures. Dev Cell 23:874–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun TL, Qing GY, Su BL, Jiang L (2011) Functional biointerface materials inspired from nature. Chem Soc Rev 40:2909–2921

    Article  CAS  PubMed  Google Scholar 

  • Sun XJ, Chen WD, Wang YD (2015) β-amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol 6:9

    Google Scholar 

  • Tamerler C, Sarikaya M (2008) Molecular biomimetics: genetic synthesis, assembly, and formation of materials using peptides. MRS Bull 33:504–510

    Article  CAS  Google Scholar 

  • Tanase M, Silevitch DM, Hultgren A, Bauer LA, Searson PC, Meyer GJ, Reich DH (2002) Magnetic trapping and self-assembly of multicomponent nanowires. J Appl Phys 91:8549–8551

    Article  CAS  Google Scholar 

  • Tang CK, Qiu F, Zhao XJ (2013) Molecular design and applications of self-assembling surfactant-like peptides. J Nanomater 9

    Google Scholar 

  • Tegoni M (2014) De Novo designed copper α-helical peptides: from design to function. Eur J Inorg Chem 2014:2177–2193

    Article  CAS  Google Scholar 

  • Tew GN, Scott RW, Klein ML, Degrado WF (2010) De Novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc Chem Res 43:30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas F, Burgess NC, Thomson AR, Woolfson DN (2016) Controlling the assembly of coiled–coil peptide nanotubes. Angew Chem Int Ed 128:999–1003

    Article  Google Scholar 

  • Thomson AR, Wood CW, Burton AJ, Bartlett GJ, Sessions RB, Brady RL, Woolfson DN (2014) Computational design of water-soluble α-helical barrels. Science 346:485–488

    Article  CAS  PubMed  Google Scholar 

  • Tian XB, Sun FD, Zhou XR, Luo SZ, Chen L (2015) Role of peptide self-assembly in antimicrobial peptides. J Pept Sci 21:530–539

    Article  CAS  PubMed  Google Scholar 

  • Toksoz S, Acar H, Guler MO (2010) Self-assembled one-dimensional soft nanostructures. Soft Matter 6:5839–5849

    Article  CAS  Google Scholar 

  • Tomasini C, Huc., Aitken DJ, Fulop F (2013) Foldamers. Eur J Org Chem 3408–3409

    Google Scholar 

  • Torres E, Gorrea E, Da Silva E, Nolis P, Branchadell V, Ortuno RM (2009) Prevalence of eight-membered hydrogen-bonded rings in some bis(cyclobutane) β-dipeptides including residues with trans stereochemistry. Org Lett 11:2301–2304

    Article  CAS  PubMed  Google Scholar 

  • Ulijn RV, Smith AM (2008) Designing peptide based nanomaterials. Chem Soc Rev 37:664–675

    Article  CAS  PubMed  Google Scholar 

  • Urman S, Gaus K, Yang Y, Strijowski U, Sewald N, De Pol S, Reiser O (2007) The constrained amino acid β-Acc confers potency and selectivity to integrin ligands. Angew Chem Int Ed 46:3976–3978

    Article  CAS  Google Scholar 

  • Vaz E, Pomerantz WC, Geyer M, Gellman SH, Brunsveld L (2008) Comparison of design strategies for promotion of β-peptide 14-helix stability in water. ChemBioChem 9:2254–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velichko YS, Mantei JR, Bitton R, Carvajal D, Shull KR, Stupp SI (2012) Electric field controlled self-assembly of hierarchically ordered membranes. Adv Funct Mater 22:369–377

    Article  CAS  PubMed  Google Scholar 

  • Verma M, Vats A, Taneja V (2015) Toxic species in amyloid disorders: oligomers or mature fibrils. Ann Indian Acad Neurol 18:138–145

    Article  PubMed  PubMed Central  Google Scholar 

  • Versluis F, Marsden HR, Kros A (2010) Power struggles in peptide-amphiphile nanostructures. Chem Soc Rev 39:3434–3444

    Article  CAS  PubMed  Google Scholar 

  • Victorov A (2015) Molecular thermodynamics of soft self-assembling structures for engineering applications. J Chem Technol Biotechnol 90:1357–1363

    Article  CAS  Google Scholar 

  • Vijayakumar M, Qian H, Zhou HX (1999) Hydrogen bonds between short polar side chains and peptide backbone: prevalence in proteins and effects on helix-forming propensities. Proteins 34:497–507

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Robertson JL, Spillman WB, Claus RO (2004) Effects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility. Pharm Res 21:1362–1373

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu F, Andavan GTS, Jing XY, Singh K, Yazdanpanah VR, Bruque N, Pandey RR, Lake R, Ozkan M, Wang KL, Ozkan CS (2006a) Carbon nanotube-DNA nanoarchitectures and electronic functionality. Small 2:1356–1365

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, Kim HJ, Wong C, Vepari C, Matsumoto A, Kaplan DL (2006b) Fibrous proteins and tissue engineering. Mater Today 9:44–53

    Article  Google Scholar 

  • Wang Y, Xu H, Zhang X (2009) Tuning the amphiphilicity of building blocks: controlled self-assembly and disassembly for functional supramolecular materials. Adv Mater 21:2849–2864

    Article  CAS  Google Scholar 

  • Wang MJ, Du LJ, Wu XL, Xiong SJ, Chu PK (2011) Charged diphenylalanine nanotubes and controlled hierarchical self-assembly. ACS Nano 5:4448–4454

    Article  CAS  PubMed  Google Scholar 

  • Werner HM, Horne WS (2015) Folding and function in α/β-peptides: targets and therapeutic applications. Curr Opin Chem Biol 28:75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  CAS  PubMed  Google Scholar 

  • Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319

    Article  CAS  PubMed  Google Scholar 

  • Wipf P, Wang XD (2000) Diels-Alder approaches to ring-functionalized cyclic β-amino acids. Tetrahedron Lett 41:8747–8751

    Article  CAS  Google Scholar 

  • Wolfenden R (1978) Interaction of peptide-bond with solvent water-vapor-phase analysis. Biochemistry 17:201–204

    Article  CAS  PubMed  Google Scholar 

  • Woolfson DN (2010) Building fibrous biomaterials from α-helical and collagen-like coiled-coil peptides. Biopolymers 94:118–127

    Article  CAS  PubMed  Google Scholar 

  • Woolfson DN, Ryadnov MG (2006) Peptide-based fibrous biomaterials: some things old, new and borrowed. Curr Opin Chem Biol 10:559–567

    Article  CAS  PubMed  Google Scholar 

  • Wu YD, Wang DP (1998) Theoretical studies of β-peptide models. J Am Chem Soc 120:13485–13493

    Article  CAS  Google Scholar 

  • Wu YD, Wang DP (1999) Theoretical study on side-chain control of the 14-helix and the 10/12-helix of β-peptides. J Am Chem Soc 121:9352–9362

    Article  CAS  Google Scholar 

  • Wu YD, Wang DP (2000) Theoretical study of β2,3-peptide models. J Chin Chem Soc 47:129–134

    Article  CAS  Google Scholar 

  • Wu YD, Han W, Wang DP, Gao Y, Zhao YL (2008) Theoretical analysis of secondary structures of β-peptides. Acc Chem Res 41:1418–1427

    Article  CAS  PubMed  Google Scholar 

  • Yan XH, Zhu PL, Li JB (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39:1877–1890

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Fung SY, Pritzker M, Chen P (2007a) Modification of hydrophilic and hydrophobic surfaces using an ionic-complementary peptide. Plos One 211

    Google Scholar 

  • Yang H, Fung SY, Pritzker M, Chen P (2007b) Surface-assisted assembly of an ionic-complementary peptide: controllable growth of nanofibers. J Am Chem Soc 129:12200–12210

    Article  CAS  PubMed  Google Scholar 

  • Yang YL, Khoe U, Wang XM, Horii A, Yokoi H, Zhang SG (2009) Designer self-assembling peptide nanomaterials. Nano Today 4:193–210

    Article  CAS  Google Scholar 

  • Yoshida M, Langer R, Lendlein A, Lahann J (2006) From advanced biomedical coatings to multi-functionalized biomaterials. Polym Rev 46:347–375

    CAS  Google Scholar 

  • Yu J, Wang QR, Zhang X (2014) Effects of external force fields on peptide self-assembly and biomimetic silica synthesis. Appl Surf Sci 311:799–807

    Article  CAS  Google Scholar 

  • Zastrow ML, Pecoraro VL (2013) Designing functional metalloproteins: from structural to catalytic metal sites. Coord Chem Rev 257:2565–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SG (2002) Emerging biological materials through molecular self-assembly. Biotechnol Adv 20:321–339

    Article  CAS  PubMed  Google Scholar 

  • Zhang SG (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  CAS  PubMed  Google Scholar 

  • Zhang SG, Altman M (1999) Peptide self-assembly in functional polymer science and engineering. React Funct Polym 41:91–102

    Article  CAS  Google Scholar 

  • Zhang SG, Rich A (1997) Direct conversion of an oligopeptide from a β-sheet to an α-helix: a model for amyloid formation. Proc Natl Acad Sci USA 94:23–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang C (2011) Supramolecular amphiphiles. Chem Soc Rev 40:94–101

    Article  CAS  PubMed  Google Scholar 

  • Zhang SG, Holmes T, Lockshin C, Rich (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci USA 90:3334–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SG, Holmes TC, Dipersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian-cell attachment. Biomaterials 16:1385–1393

    Article  PubMed  Google Scholar 

  • Zhang SG, Marini DM, Hwang W, Santoso S (2002) Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol 6:865–871

    Article  PubMed  Google Scholar 

  • Zhang Y, Gu HW, Yang ZM, Xu B (2003) Supramolecular hydrogels respond to ligand-receptor interaction. J Am Chem Soc 125:13680–13681

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Liu SJ, Yu SH (2009) Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. J Mater Chem 19:191–207

    Article  CAS  Google Scholar 

  • Zhang RJ, Zheng N, Song ZY, Yin LC, Cheng JJ (2014) The effect of side-chain functionality and hydrophobicity on the gene delivery capabilities of cationic helical polypeptides. Biomaterials 35:3443–3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CW, Hang LT, Yao TP, Lim KL (2016) Parkin regulation and neurodegenerative disorders. Front Aging Neurosci 7:15

    Article  Google Scholar 

  • Zhao XB, Pan F, Lu JR (2008) Recent development of peptide self-assembly. Prog Nat Sci Mater Int 18:653–660

    Article  CAS  Google Scholar 

  • Zhao LN, Long HW, Mu YG, Chew LY (2012) The toxicity of amyloid β oligomers. Int J Mol Sci 13:7303–7327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao LX, Li NN, Wang KM, Shi CH, Zhang LL, Luan YX (2014) A review of polypeptide-based polymersomes. Biomaterials 35:1284–1301

    Article  CAS  PubMed  Google Scholar 

  • Zhong J, Liu XW, Wei DX, Yan J, Wang P, Sun G, He DN (2015) Effect of incubation temperature on the self-assembly of regenerated silk fibroin: a study using AFM. Int J Biol Macromol 76:195–202

    Article  CAS  PubMed  Google Scholar 

  • Zhu PL, Yan XH, Su Y, Yang Y, Li JB (2010) Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals. Chem Eur J 16:3176–3183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Mechler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seoudi, R.S., Mechler, A. (2017). Design Principles of Peptide Based Self-Assembled Nanomaterials. In: Sunna, A., Care, A., Bergquist, P. (eds) Peptides and Peptide-based Biomaterials and their Biomedical Applications. Advances in Experimental Medicine and Biology, vol 1030. Springer, Cham. https://doi.org/10.1007/978-3-319-66095-0_4

Download citation

Publish with us

Policies and ethics