Skip to main content

The Current Role of Cell-Penetrating Peptides in Cancer Therapy

  • Chapter
  • First Online:
Peptides and Peptide-based Biomaterials and their Biomedical Applications

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1030))

Abstract

Cell-penetrating peptides (CPPs) are a heterogeneous class of peptides with the ability to translocate across the plasma membrane and to carry attached cargos inside the cell. Two main entry pathways are discussed, as direct translocation and endocytosis , whereas the latter is often favored when bulky cargos are added to the CPP. Attachment to the CPP can be achieved by means of covalent coupling or non-covalent complex formation, depending on the chemical nature of the cargo. Owing to their striking abilities the further development and application of CPP-based delivery strategies has steadily emerged during the past years. However, one main pitfall when using CPPs is their non-selective uptake in nearly all types of cells. Thus, one particular interest lies in the design of targeting strategies that help to circumvent this drawback but still benefit from the potent delivery abilities of CPPs. The following review aims to summarize some of these very recent concepts and to highlight the current role of CPPs in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves ID, Carre M et al (2014) A proapoptotic peptide conjugated to penetratin selectively inhibits tumor cell growth. Biochim Biophys Acta 1838(8):2087–2098

    Article  CAS  PubMed  Google Scholar 

  • Aroui S, Dardevet L et al (2015) A novel platinum-maurocalcine conjugate induces apoptosis of human glioblastoma cells by acting through the ROS-ERK/AKT-p53 pathway. Mol Pharm 12(12):4336–4348

    Article  CAS  PubMed  Google Scholar 

  • Bazak R, Houri M et al (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141(5):769–784

    Article  CAS  PubMed  Google Scholar 

  • Bolhassani A, Jafarzade BS et al (2017) In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides 87:50–63

    Article  CAS  PubMed  Google Scholar 

  • Bu X, Zhu T et al (2015) Co-administration with cell penetrating peptide enhances the oral bioavailability of docetaxel-loaded nanoparticles. Drug Dev Ind Pharm 41(5):764–771

    Article  CAS  PubMed  Google Scholar 

  • Chen B, He XY et al (2015) Dual-peptide-functionalized albumin-based nanoparticles with pH-dependent self-assembly behavior for drug delivery. ACS Appl Mater Interfaces 7(28):15148–15153

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Huang F et al (2016) Protease-responsive prodrug with aggregation-induced emission probe for controlled drug delivery and drug release tracking in living cells. Anal Chem 88(17):8913–8919

    Article  CAS  PubMed  Google Scholar 

  • Crisp JL, Savariar EN et al (2014) Dual targeting of integrin alpha(v)beta(3) and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery. Mol Cancer Ther 13(6):1514–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai L, Liu Y et al (2013) A novel cyclinE/cyclinA-CDK inhibitor targets p27(Kip1) degradation, cell cycle progression and cell survival: implications in cancer therapy. Cancer Lett 333(1):103–112

    Article  CAS  PubMed  Google Scholar 

  • Derossi D, Joliot AH et al (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269(14):10444–10450

    CAS  PubMed  Google Scholar 

  • Dinca A, Chien WM et al (2016) Intracellular delivery of proteins with cell-penetrating peptides for therapeutic uses in human disease. Int J Mol Sci 17(2):263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding J, Yao J et al (2015) Tumor-homing cell-penetrating peptide linked to colloidal mesoporous silica encapsulated (−)-epigallocatechin-3-gallate as drug delivery system for breast cancer therapy in vivo. ACS Appl Mater Interfaces 7(32):18145–18155

    Article  CAS  PubMed  Google Scholar 

  • Durzynska J, Przysiecka L et al (2015) Viral and other cell-penetrating peptides as vectors of therapeutic agents in medicine. J Pharmacol Exp Ther 354(1):32–42

    Article  CAS  PubMed  Google Scholar 

  • Elliott G, O'Hare P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88(2):223–233

    Article  CAS  PubMed  Google Scholar 

  • Elmquist A, Lindgren M et al (2001) VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res 269(2):237–244

    Article  CAS  PubMed  Google Scholar 

  • Farkhani SM, Valizadeh A et al (2014) Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides 57:78–94

    Article  CAS  PubMed  Google Scholar 

  • Fei L, Yap LP et al (2014) Tumor targeting of a cell penetrating peptide by fusing with a pH-sensitive histidine-glutamate co-oligopeptide. Biomaterials 35(13):4082–4087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Xiang B et al (2013) Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides. Biomaterials 34(16):4137–4149

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Lin Z et al (2014) The co-delivery of a low-dose P-glycoprotein inhibitor with doxorubicin sterically stabilized liposomes against breast cancer with low P-glycoprotein expression. Int J Nanomedicine 9:3425–3437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gautam A, Nanda JS et al (2016) Topical delivery of protein and peptide using novel cell penetrating peptide IMT-P8. Sci Rep 6

    Google Scholar 

  • Golan M, Feinshtein V et al. (2016) Conjugates of HA2 with octaarginine-grafted HPMA copolymer offer effective siRNA delivery and gene silencing in cancer cells. Eur J Pharm Biopharm

    Google Scholar 

  • Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55(6):1179–1188

    Article  CAS  PubMed  Google Scholar 

  • Gu GZ, Xia HM et al (2013) PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials 34(1):196–208

    Article  PubMed  CAS  Google Scholar 

  • Hauff SJ, Raju SC et al (2014) Matrix-metalloproteinases in head and neck carcinoma-cancer genome atlas analysis and fluorescence imaging in mice. Otolaryngol Head Neck Surg 151(4):612–618

    Article  PubMed  PubMed Central  Google Scholar 

  • He H, Ye J et al (2014) Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application. J Control Release 176:123–132

    Article  CAS  PubMed  Google Scholar 

  • Horn M, Reichart F et al (2016) Tuning the properties of a novel short cell-penetrating peptide by intramolecular cyclization with a triazole bridge. Chem Commun 52(11):2261–2264

    Article  CAS  Google Scholar 

  • Hoyer J, Neundorf I (2012) Peptide vectors for the nonviral delivery of nucleic acids. Acc Chem Res 45(7):1048–1056

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Splith K et al (2012) Influence of the metal center and linker on the intracellular distribution and biological activity of organometal-peptide conjugates. J Biol Inorg Chem 17(2):175–185

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Jiang Y et al (2013) Curb challenges of the “Trojan Horse” approach: smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv Drug Deliv Rev 65(10):1299–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarver P, Mager I et al (2010) In vivo biodistribution and efficacy of peptide mediated delivery. Trends Pharmacol Sci 31(11):528–535

    Article  PubMed  CAS  Google Scholar 

  • Kauffman WB, Fuselier T et al (2015) Mechanism matters: a taxonomy of cell penetrating peptides. Trends Biochem Sci 40(12):749–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khafagy el S, Morishita M (2012) Oral biodrug delivery using cell-penetrating peptide. Adv Drug Deliv Rev 64(6):531–539

    Article  CAS  Google Scholar 

  • Kim SM, Chae MK et al (2014a) Enhanced cellular uptake of a TAT-conjugated peptide inhibitor targeting the polo-box domain of polo-like kinase 1. Amino Acids 46(11):2595–2603

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Lee IH et al (2014b) A specific STAT3-binding peptide exerts antiproliferative effects and antitumor activity by inhibiting STAT3 phosphorylation and signaling. Cancer Res 74(8):2144–2151

    Article  CAS  PubMed  Google Scholar 

  • Kopecka J, Salzano G et al (2014) Insights in the chemical components of liposomes responsible for P-glycoprotein inhibition. Nanomedicine 10(1):77–87

    Article  CAS  PubMed  Google Scholar 

  • Koren E, Torchilin VP (2012) Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 18(7):385–393

    Article  CAS  PubMed  Google Scholar 

  • Koren E, Apte A et al (2012) Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release 160(2):264–273

    Article  CAS  PubMed  Google Scholar 

  • Kristensen M, Nielsen HM (2016) Cell-penetrating peptides as carriers for oral delivery of biopharmaceuticals. Basic Clin Pharmacol Toxicol 118(2):99–106

    Article  CAS  PubMed  Google Scholar 

  • Kristensen M, Birch D et al (2016) Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos. Int J Mol Sci 17(2):185

    Article  PubMed Central  CAS  Google Scholar 

  • Kuroda Y, Kato-Kogoe N et al (2013) Oligopeptides derived from autophosphorylation sites of EGF receptor suppress EGF-stimulated responses in human lung carcinoma A549 cells. Eur J Pharmacol 698(1-3):87–94

    Article  CAS  PubMed  Google Scholar 

  • Lelle M, Frick SU et al (2014) Novel cleavable cell-penetrating peptide-drug conjugates: synthesis and characterization. J Pept Sci 20(5):323–333

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zheng X et al (2012) Self-assembled peptide (CADY-1) improved the clinical application of doxorubicin. Int J Pharm 434(1–2):209–214

    Article  CAS  PubMed  Google Scholar 

  • Li SY, Cheng H et al (2015a) Protease-Activable cell-penetrating peptide-protoporphyrin conjugate for targeted photodynamic therapy in vivo. ACS Appl Mater Interfaces 7(51):28319–28329

    Article  CAS  PubMed  Google Scholar 

  • Li H, He J et al. (2015b) siRNA suppression of hTERT using activatable cell-penetrating peptides in hepatoma cells. Biosci rep 35(2)

    Google Scholar 

  • Li Y, Lee RJ et al (2016) Delivery of siRNA using lipid nanoparticles modified with cell penetrating peptide. ACS Appl Mater Interfaces 8(40):26613–26621

    Article  CAS  PubMed  Google Scholar 

  • Lim KJ, Sung BH et al (2013) A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells. PLoS One 8(6):e66084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Xiong M et al (2014a) Legumain protease-activated TAT-liposome cargo for targeting tumours and their microenvironment. Nat Commun 5:4280

    CAS  PubMed  Google Scholar 

  • Liu Y, Ran R et al (2014b) Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials 35(17):4835–4847

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Zhang BL et al (2015) Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo. Nanoscale 7(8):3614–3626

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Mei L et al (2016) Dual receptor recognizing cell penetrating peptide for selective targeting, efficient Intratumoral diffusion and synthesized anti-glioma therapy. Theranostics 6(2):177–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Huang J et al (2016) Cancer-targeted Nanotheranostics: recent advances and perspectives. Small 12(36):4936–4954

    Article  CAS  PubMed  Google Scholar 

  • MacEwan SR, Chilkoti A (2013) Harnessing the power of cell-penetrating peptides: activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(1):31–48

    Article  CAS  PubMed  Google Scholar 

  • Madani F, Lindberg S et al (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:414729

    PubMed  PubMed Central  Google Scholar 

  • Mae M, Rautsi O et al (2012) Tumour targeting with rationally modified cell-penetrating peptides. Int J Pept Res Ther 18(4):361–371

    Article  CAS  Google Scholar 

  • Mandal D, Nasrolahi Shirazi A et al (2011) Cell-penetrating homochiral cyclic peptides as nuclear-targeting molecular transporters. Angew Chem 50(41):9633–9637

    Article  CAS  Google Scholar 

  • Margus H, Padari K et al (2012) Cell-penetrating peptides as versatile vehicles for oligonucleotide delivery. Mol Ther 20(3):525–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mas-Moruno C, Rechenmacher F et al (2010) Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anti Cancer Agents Med Chem 10(10):753–768

    Article  CAS  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  • Michiue H, Sakurai Y et al (2014) The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials 35(10):3396–3405

    Article  CAS  PubMed  Google Scholar 

  • Mitchell DJ, Kim DT et al (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56(5):318–325

    Article  CAS  PubMed  Google Scholar 

  • Nakase I, Konishi Y et al (2012) Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. J Control Release 159(2):181–188

    Article  CAS  PubMed  Google Scholar 

  • Neundorf I, Hoyer J et al. (2008) Cymantrene conjugation modulates the intracellular distribution and induces high cytotoxicity of a cell-penetrating peptide. Chem Commun (Camb)(43): 5604-5606

    Google Scholar 

  • Neundorf I, Rennert R et al (2009) Fusion of a short HA2-derived peptide sequence to cell-penetrating peptides improves cytosolic uptake, but enhances cytotoxic activity. Pharmaceuticals (Basel) 2(2):49–65

    Article  CAS  Google Scholar 

  • Orzechowska EJ, Kozlowska E et al (2014) Controlled delivery of BID protein fused with TAT peptide sensitizes cancer cells to apoptosis. BMC Cancer 14:771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prezma T, Shteinfer A et al (2013) VDAC1-based peptides: novel pro-apoptotic agents and potential therapeutics for B-cell chronic lymphocytic leukemia. Cell Death Dis 4:e809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prochiantz A (1996) Getting hydrophilic compounds into cells: lessons from homeopeptides. Curr Opin Neurobiol 6(5):629–634

    Article  CAS  PubMed  Google Scholar 

  • Raucher D, Ryu JS (2015) Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med 21(9):560–570

    Article  CAS  PubMed  Google Scholar 

  • Regberg J, Srimanee A et al (2012) Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals (Basel) 5(12):991–1007

    Article  CAS  Google Scholar 

  • Reichart F, Horn M et al (2016) Cyclization of a cell-penetrating peptide via click-chemistry increases proteolytic resistance and improves drug delivery. J Pept Sci 22(6):421–426

    Article  CAS  PubMed  Google Scholar 

  • Reissmann S (2014) Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 20(10):760–784

    Article  CAS  PubMed  Google Scholar 

  • Rizzuti M, Nizzardo M et al (2015) Therapeutic applications of the cell-penetrating HIV-1 tat peptide. Drug Discov Today 20(1):76–85

    Article  CAS  PubMed  Google Scholar 

  • Rothbard JB, Garlington S et al (2000) Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med 6(11):1253–1257

    Article  CAS  PubMed  Google Scholar 

  • Ryu JS, Raucher D (2014) Anti-tumor efficacy of a therapeutic peptide based on thermo-responsive elastin-like polypeptide in combination with gemcitabine. Cancer Lett 348(1–2):177–184

    Article  CAS  PubMed  Google Scholar 

  • Savariar EN, Felsen CN et al (2013) Real-time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cell-penetrating peptides. Cancer Res 73(2):855–864

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Nagpal P et al (2014) A novel cell-penetrating peptide to facilitate intercellular transport of fused proteins. J Control Release 188:44–52

    Article  CAS  PubMed  Google Scholar 

  • Shin MC, Zhang J et al (2014a) Cell-penetrating peptides: achievements and challenges in application for cancer treatment. J Biomed Mater Res A 102(2):575–587

    Article  PubMed  CAS  Google Scholar 

  • Shin MC, Zhang J et al (2014b) Combination of antibody targeting and PTD-mediated intracellular toxin delivery for colorectal cancer therapy. J Control Release 194:197–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirazi AN, Tiwari R et al (2013) Design and biological evaluation of cell-penetrating peptide-doxorubicin conjugates as prodrugs. Mol Pharm 10(2):488–499

    Article  CAS  Google Scholar 

  • Skotland T, Iversen TG et al (2015) Cell-penetrating peptides: possibilities and challenges for drug delivery in vitro and in vivo. Molecules 20(7):13313–13323

    Article  CAS  PubMed  Google Scholar 

  • Splith K, Neundorf I et al (2010a) Influence of the metal complex-to-peptide linker on the synthesis and properties of bioactive CpMn(CO)3 peptide conjugates. Dalton Trans 39(10):2536–2545

    Article  CAS  PubMed  Google Scholar 

  • Splith K, Hu W et al (2010b) Protease-activatable organometal-peptide bioconjugates with enhanced cytotoxicity on cancer cells. Bioconjug Chem 21(7):1288–1296

    Article  CAS  PubMed  Google Scholar 

  • Splith K, Bergmann R et al (2012) Specific targeting of hypoxic tumor tissue with nitroimidazole-peptide conjugates. ChemMedChem 7(1):57–61

    Article  CAS  PubMed  Google Scholar 

  • Suhorutsenko J, Eriste E et al (2012) Human protein 53-derived cell-penetrating peptides. Int J Pept Res Ther 18(4):291–297

    Article  CAS  Google Scholar 

  • Sun T, Zhang YS et al (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem 53(46):12320–12364

    CAS  Google Scholar 

  • Tanaka K, Kanazawa T et al (2013) Cytoplasm-responsive nanocarriers conjugated with a functional cell-penetrating peptide for systemic siRNA delivery. Int J Pharm 455(1-2):40–47

    Article  CAS  PubMed  Google Scholar 

  • Tian R, Wang H et al (2015) Drug delivery with nanospherical supramolecular cell penetrating peptide-taxol conjugates containing a high drug loading. J Colloid Interface Sci 453:15–20

    Article  CAS  PubMed  Google Scholar 

  • Tints K, Prink M et al (2014) LXXLL peptide converts transportan 10 to a potent inducer of apoptosis in breast cancer cells. Int J Mol Sci 15(4):5680–5698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueda Y, Wei FY et al (2012) Induction of autophagic cell death of glioma-initiating cells by cell-penetrating D-isomer peptides consisting of Pas and the p53 C-terminus. Biomaterials 33(35):9061–9069

    Article  CAS  PubMed  Google Scholar 

  • Vargas JR, Stanzl EG et al (2014) Cell-penetrating, guanidinium-rich molecular transporters for overcoming efflux-mediated multidrug resistance. Mol Pharm 11(8):2553–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veiman KL, Kunnapuu K et al (2015) PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo. J Control Release 209:238–247

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liang J et al (2014a) Cell-penetrating apoptotic peptide/p53 DNA nanocomplex as adjuvant therapy for drug-resistant breast cancer. Mol Pharm 11(10):3352–3360

    Article  CAS  PubMed  Google Scholar 

  • Wang HX, Yang XZ et al (2014b) Matrix metalloproteinase 2-responsive micelle for siRNA delivery. Biomaterials 35(26):7622–7634

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhao Y et al (2014c) Low-molecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer. J Control Release 192:47–56

    Article  CAS  PubMed  Google Scholar 

  • Warso MA, Richards JM et al (2013) A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours. Br J Cancer 108(5):1061–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wender PA, Galliher WC et al (2012) Taxol-oligoarginine conjugates overcome drug resistance in-vitro in human ovarian carcinoma. Gynecol Oncol 126(1):118–123

    Article  CAS  PubMed  Google Scholar 

  • Xiang B, Dong DW et al (2013) PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials 34(28):6976–6991

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Ho W et al (2015) Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med 21(4):223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Xie X et al (2014) PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide-doxorubicin conjugate for tumor-specific therapy. Biomaterials 35(14):4368–4381

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Xie X et al (2015) Dual-modified liposomes with a two-photon-sensitive cell penetrating peptide and NGR ligand for siRNA targeting delivery. Biomaterials 48:84–96

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Xie X et al (2016a) Polymer nanoparticles modified with photo- and pH-dual-responsive polypeptides for enhanced and targeted cancer therapy. Mol Pharm 13(5):1508–1519

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Xie X et al (2016b) Thermal and magnetic dual-responsive liposomes with a cell-penetrating peptide-siRNA conjugate for enhanced and targeted cancer therapy. Colloids Surf B Biointerfaces 146:607–615

    Article  CAS  PubMed  Google Scholar 

  • Yeh TH, Che YR et al (2016) Selective intracellular delivery of recombinant arginine deiminase (ADI) using pH-sensitive cell penetrating peptides to overcome ADI resistance in hypoxic breast cancer cells. Mol Pharm 13(1):262–271

    Article  CAS  PubMed  Google Scholar 

  • Youn P, Chen Y et al (2014) A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Mol Pharm 11(2):486–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaro JL (2015) Lipid-based drug carriers for prodrugs to enhance drug delivery. AAPS J 17(1):83–92

    Article  CAS  PubMed  Google Scholar 

  • Zaro JL, Shen WC (2015) Cationic and amphipathic cell-penetrating peptides (CPPs): their structures and in vivo studies in drug delivery. Front Chem Sci Eng 9(4):407–427

    Article  CAS  Google Scholar 

  • Zheng Z, Aojula H et al (2010) Reduction of doxorubicin resistance in P-glycoprotein overexpressing cells by hybrid cell-penetrating and drug-binding peptide. J Drug Target 18(6):477–487

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Wang T et al (2013) Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proc Natl Acad Sci U S A 110(42):17047–17052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Neundorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feni, L., Neundorf, I. (2017). The Current Role of Cell-Penetrating Peptides in Cancer Therapy. In: Sunna, A., Care, A., Bergquist, P. (eds) Peptides and Peptide-based Biomaterials and their Biomedical Applications. Advances in Experimental Medicine and Biology, vol 1030. Springer, Cham. https://doi.org/10.1007/978-3-319-66095-0_13

Download citation

Publish with us

Policies and ethics