Skip to main content

Abstract

Predictive toxicology requires in vitro tests that can help prioritize, screen, and evaluate a large number of chemicals (i.e., thousands) in a relatively short period of time (days to weeks). Cell-free assays represent a relatively simple in vitro tool that can characterize the interaction between test chemicals and biochemical targets, and are increasingly being used to study a range of fish and wildlife, and also screen single chemicals as well as complex mixtures of environmental samples. The purpose of this chapter is to describe cell-free assays, and propose them as a species agnostic, in vitro toxicity-testing tool of potential relevance to ecological risk assessment. In doing so, the chapter aims to show that cell-free tests are an attractive tool that can be used in predictive ecotoxicology especially considering the limited availability of test organisms (particularly species that are at-risk, difficult to maintain in captivity, etc.), lack of proven cell-based tools (e.g., cell cultures and cell lines), societal concerns over animal testing, sheer number of ecological species to study, and vast inter-species differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, Serrrano JA, Tietge JE, Villeneuve DL (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741

    Article  PubMed  CAS  Google Scholar 

  • Arini A, Cavallin JE, Berninger JP, Marfil-Vega R, Mills M, Villeneuve DL, Basu N (2016) In vivo and in vitro neurochemical-based assessments of wastewater effluents from the Maumee River area of concern. Environ Pollut 211:9–19

    Article  PubMed  CAS  Google Scholar 

  • Attene-Ramos MS, Miller N, Huang R, Michael S, Itkin M, Kavlock RJ, Austin CP, Shinn P, Simeonov A, Tice RR, Xia M (2013) The Tox21 robotic platform for the assessment of environmental chemicals–from vision to reality. Drug Discov Today 18(15–16):716–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Basu N, Stamler CJ, Loua KM, Chan HM (2005) An interspecies comparison of mercury inhibition on muscarinic acetylcholine receptor binding in the cerebral cortex and cerebellum. Toxicol Appl Pharmacol 205:71–76

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Kwan M, Chan HM (2006) Mercury but not organochlorines inhibits muscarinic cholinergic receptor binding in the cerebrum of ringed seals (Phoca hispida). J Toxicol Environ Health A 69:1133–1143

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Rouvinen-Watt K, Evans RD, Grochowina N, Chan LHM (2008) The effects of mercury on muscarinic cholinergic receptor subtypes (M1 and M2) in captive mink. Neurotoxicology 29:328–334

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Ta CA, Waye A, Mao J, Hewitt M, Arnason JT, Trudeau VL (2009) Pulp and paper mill effluents contain neuroactive substances that potentially disrupt neuroendocrine control of fish reproduction. Environ Sci Technol 43:1635–1641

    Article  PubMed  CAS  Google Scholar 

  • Bhogal N, Grindon C, Combes R, Balls M (2005) Toxicity testing: creating a revolution based on new technologies. Trends Biotechnol 23:299–307

    Article  PubMed  CAS  Google Scholar 

  • DeVries JK, Zubay G (1967) DNA-directed peptide synthesis. II. The synthesis of the alpha-fragment of the enzyme beta-galactosidase. Proc Natl Acad Sci U S A 57:1010–1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dix DJ, Houck KA, Martin MT, Richard AM, Setzer RW, Kavlock RJ (2007) The toxcast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 95:5–12

    Article  PubMed  CAS  Google Scholar 

  • ECHA (2016) New approach methodologies in regulatory science. Proceedings of a scientific workshop, Helsinki, European Chemicals Agency, April 19–20, 2016. https://echa.europa.eu/documents/10162/22816069/scientific_ws_proceedings_en.pdf/a2087434-0407-4705-9057-95d9c2c2cc57

  • Englebienne P (2005) High throughput screening: will the past meet the future? Front Drug Des Discovery 1:69–86

    Article  CAS  Google Scholar 

  • Hartung T (2009) A toxicology for the 21st century—mapping the road ahead. Toxicol Sci 109:18–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Head JA, Hahn ME, Kennedy SW (2008) Key amino acids in the aryl hydrocarbon receptor predict dioxin sensitivity in avian species. Environ Sci Technol 42:7535–7541

    Article  PubMed  CAS  Google Scholar 

  • Huang R, Xia M, Sakamuru S, Zhao J, Shahane SA, Attene-Ramos M, Zhao T, Austin CP, Simeonov A (2016) Modelling the Tox21 10[thinsp]K chemical profiles for in vivo toxicity prediction and mechanism characterization. Nat Commun 7:10245

    Article  CAS  Google Scholar 

  • Judson R, Richard A, Dix DJ, Houck K, Martin M, Kavlock R, Dellarco V, Henry T, Holderman T, Sayre P, Tan S, Carpenter T, Smith E (2009) The toxicity data landscape for environmental chemicals. Environ Health Perspect 117:685–695

    Article  PubMed  CAS  Google Scholar 

  • Judson RS, Houck KA, Kavlock RJ, Knudsen TB, Martin MT, Mortensen HM, Reif DM, Rotroff DM, Shah I, Richard AM, Dix DJ (2010) In vitro screening of environmental chemicals for targeted testing prioritization: the toxcast project. Environ Health Perspect 118:485–492

    Article  PubMed  CAS  Google Scholar 

  • Karmaus AL, Toole CM, Filer DL, Lewis KC, Martin MT (2016) High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells. Toxicol Sci 150(2):323–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kavlock R, Chandler K, Houck K, Hunter S, Judson R, Kleinstreuer N, Knudsen T, Martin M, Padilla S, Reif D, Richard A, Rotroff D, Sipes N, Dix D (2012) Update on EPA’s ToxCast program: providing high throughput decision support tools for chemical risk management. Chem Res Toxicol 25:1287–1302

    Article  PubMed  CAS  Google Scholar 

  • Knudsen TB, Houck KA, Sipes NS, Singh AV, Judson RS, Martin MT, Weissman A, Kleinstreuer NC, Mortensen HM, Reif DM, Rabinowitz JR, Setzer RW, Richard AM, Dix DJ, Kavlock RJ (2011) Activity profiles of 309 ToxCastâ„¢ chemicals evaluated across 292 biochemical targets. Toxicology 282:1–15

    Article  PubMed  CAS  Google Scholar 

  • Landesmann B, Mennecozzi M, Berggren E, Whelan M (2013) Adverse outcome pathway-based screening strategies for an animal-free safety assessment of chemicals. ATLA Alter Lab Anim 41:461–471

    CAS  Google Scholar 

  • Leifert WR, Aloia AL, Bucco O, Glatz RV, McMurchie EJ (2005) G-protein-coupled receptors in drug discovery: nanosizing using cell-free technologies and molecular biology approaches. J Biomol Screen 10:765–779

    Article  PubMed  CAS  Google Scholar 

  • Martin MT, Knudsen TB, Reif DM, Houck KA, Judson RS, Kavlock RJ, Dix DJ (2011) Predictive model of rat reproductive toxicity from ToxCast high throughput screening. Biol Reprod 85:327–339

    Article  PubMed  CAS  Google Scholar 

  • Martin MT, Knudsen TB, Judson RS, Kavlock RJ, Dix DJ (2012) Economic benefits of using adaptive predictive models of reproductive toxicity in the context of a tiered testing program. Syst Biol Reprod Med 58:3–9

    Article  PubMed  CAS  Google Scholar 

  • Murphy CD (2007) The application of 19F nuclear magnetic resonance to investigate microbial biotransformations of organofluorine compounds. Omics: J Integr Biol 11:314–324

    Article  CAS  Google Scholar 

  • National Research Council (2007) Toxicity Testing in the 21st Century: A Vision and a Strategy. Washington, DC: The National Academies Press. https://doi.org/10.17226/11970.

  • Padilla S, Corum D, Padnos B, Hunter DL, Beam A, Houck KA, Sipes N, Kleinstreuer N, Knudsen T, Dix DJ, Reif DM (2012) Zebrafish developmental screening of the ToxCastâ„¢ phase I chemical library. Reprod Toxicol 33:174–187

    Article  PubMed  CAS  Google Scholar 

  • Piggott M, Perry E, Sahgal A, Perry R (1992) Examination of parameters influencing [3H] MK-801 binding in postmortem human cortex. J Neurochem 58:1001–1008

    Article  PubMed  CAS  Google Scholar 

  • Rotroff DM, Dix DJ, Houck KA, Kavlock RJ, Knudsen TB, Martin MT, Reif DM, Richard AM, Sipes NS, Abassi YA (2013) Real-time growth kinetics measuring hormone mimicry for ToxCast chemicals in T-47D human ductal carcinoma cells. Chem Res Toxicol 26:1097–1107

    Article  PubMed  CAS  Google Scholar 

  • Rovida C, Hartung T (2009) Re-evaluation of animal numbers and costs for in vivo tests to accomplish REACH legislation requirements for chemicals—a report by the transatlantic think tank for toxicology (t (4)). ALTEX 26:187–208

    Article  PubMed  Google Scholar 

  • Russell W. and Burch R. (1959) The Principles of Humane Experimental Technique. London UK: Methuen.

    Google Scholar 

  • Rutkiewicz J, Nam DH, Cooley T, Neumann K, Padilla IB, Route W, Strom S, Basu N (2011) Mercury exposure and neurochemical impacts in bald eagles across several Great Lakes states. Ecotoxicology 20:1669–1676

    Article  PubMed  CAS  Google Scholar 

  • Rutkiewicz J, Basu N (2012) Postmortem stability of brain GABAergic and glutamatergic receptors and enzymes under ecological conditions. Ecotoxicol Environ Saf 84:133–138

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Pei L (2011) Synthetic toxicology: where engineering meets biology and toxicology. Toxicol Sci 120:S204–S224

    Article  PubMed  CAS  Google Scholar 

  • Silva M, Pham N, Lewis C, Iyer S, Kwok E, Solomon G, Zeise L (2015) A comparison of ToxCast test results with in vivo and other in vitro endpoints for neuro, endocrine, and developmental toxicities: a case study using Endosulfan and Methidathion. Birth Defects Res B Dev Reprod Toxicol 104:71–89

    Article  PubMed  CAS  Google Scholar 

  • Sipes NS, Martin MT, Reif DM, Kleinstreuer NC, Judson RS, Singh AV, Chandler KJ, Dix DJ, Kavlock RJ, Knudsen TB (2011) Predictive models of prenatal developmental toxicity from ToxCast high-throughput screening data. Toxicol Sci 124:109–127

    Article  PubMed  CAS  Google Scholar 

  • Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB (2013) Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol 26:878–895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stamler CJ, Basu N, Man Chan H (2005) Biochemical markers of neurotoxicity in wildlife and human populations: considerations for method development. J Toxic Environ Health A 68:1413–1429

    Article  CAS  Google Scholar 

  • Villeneuve DL, Garcia-Reyero N (2011) Vision & strategy: predictive ecotoxicology in the 21st century. Environ Toxicol Chem/SETAC 30:1–8

    Article  CAS  Google Scholar 

  • Watanabe-Sailor K, Andersen ME, Basu N, Carvan MJ, Crofton KM, King KA, Suñol C, Tiffany-Castiglioni E, Schultz IR (2011) Defining and modeling known adverse outcome pathways. Environ Toxicol Chem 30:9–21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niladri Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arini, A., Mittal, K., Basu, N. (2018). Cell-Free Assays in Environmental Toxicology. In: Garcia-Reyero, N., Murphy, C. (eds) A Systems Biology Approach to Advancing Adverse Outcome Pathways for Risk Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-66084-4_3

Download citation

Publish with us

Policies and ethics