Skip to main content

Finite Frame Theory

  • Chapter
  • First Online:
A Primer for Undergraduate Research

Part of the book series: Foundations for Undergraduate Research in Mathematics ((FURM))

  • 1450 Accesses

Abstract

Given a signal, whether it is a discrete vector or a continuous function, one desires to write it in terms of simpler components. Typically, these components or “building blocks” form what is called a basis. A basis is an optimal set, containing the minimal number of elements needed to uniquely represent any signal in a given space. A frame can be thought of as a redundant basis, having more elements than needed. In fact, in any finite dimensional vector space every finite spanning set is a frame. The redundancy of a frame leads to a non-unique representation, however, this makes signal representation resilient to noise and robust to transmission losses. Frames are now standard tools in signal processing and are of great interest to mathematicians and engineers alike. This chapter presents a brief introduction to frames in finite dimensional spaces, and in particular discusses a highly desirable class of frames called equiangular tight frames. Possible research ideas suitable for an undergraduate curriculum are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The authors would like to thank Andy Kebo for sharing this example.

  2. 2.

    e i is the vector whose i th coordinate is equal to 1 and the rest are zero.

  3. 3.

    Note that two-distance tight frames as defined here and in [1] are either ETFs or 2-angle tight frames from the beginning of Section 3.1.

References

  1. Barg, A., Glazyrin, A., Okoudjou, K., Yu, W.-H.: Finite two-distance tight frames. Linear Algebra Appl. 475, 163–175 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benedetto, J.J., Fickus, M.: Finite normalized tight frames. Adv. Comput. Math. 18, 357–385 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benedetto, J.J., Kolesar, J.D.: Geometric properties of Grassmannian frames for \(\mathbb{R}^{2}\) and \(\mathbb{R}^{3}\). EURASIP J. Adv. Signal Process. 2006(1), 1–17 (2006)

    Article  Google Scholar 

  4. Bodmann, B.G., Paulsen, V.I.: Frames, graphs and erasures. Linear Algebra Appl. 404(1–3), 118–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Casazza, P.G., Christensen, O.: Approximation of the inverse frame operator and applications to Gabor frames. J. Approx. Theory 103(2), 338–356 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  7. Datta, S., Oldroyd, J.: Construction of k-angle tight frames. Numer. Funct. Anal. Optim. 37(8), 975–989 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Datta, S., Oldroyd, J.: Low coherence unit norm tight frames. Linear Multilinear Algebra (to appear)

    Google Scholar 

  9. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  10. Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72(2), 341–366 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedberg, S.H., Insel, A.J., Spence, L.E.: Linear Algebra, 4th edn. Prentice Hall, Inc. Upper Saddle River, NJ (2003)

    MATH  Google Scholar 

  13. Goyal, V.K., Kovačević, J., Kelner, J.A.: Communicated Henrique, Malvar, S.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10, 203–233 (2001)

    Google Scholar 

  14. Grochenig, K.: Acceleration of the frame algorithm. IEEE Trans. Signal Process. 41(12), 3331–3340 (1993)

    Article  MATH  Google Scholar 

  15. Han, D., Kornelson, K., Larson, D., Weber, E.: Student Mathematical Library. Frames for Undergraduates, vol. 40. American Mathematical Society, Providence, RI (2007)

    Google Scholar 

  16. Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  18. Kovačević, J., Chebira, A.: Life beyond bases: the advent of frames (Part I). IEEE Signal Process. Mag. 24(4), 86–104 (2007)

    Article  Google Scholar 

  19. Oldroyd, J.: Regular graphs and k-angle tight frames. (In preparation)

    Google Scholar 

  20. Song, G., Gelb, A.: Approximating the inverse frame operator from localized frames. Appl. Comput. Harmon. Anal. 35(1), 94–110 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Strohmer, T., Heath, R.W. Jr.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sustik, M.A., Tropp, J.A., Dhillon, I.S., Heath, R.W. Jr.: On the existence of equiangular tight frames. Linear Algebra Appl. 426(2–3), 619–635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Waldron, S.: On the construction of equiangular tight frames from graphs. Linear Algebra Appl. 431(11), 2228–2242 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Welch, L.R.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inf. Theory 20(3), 397–399 (1974)

    Article  MATH  Google Scholar 

  25. Xia, P., Zhou, S., Giannakis, G.B.: Achieving the Welch bound with difference sets. IEEE Trans. Inf. Theory 51(5), 1900–1907 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Young, R.M.: An Introduction to Nonharmonic Fourier Series. Pure and Applied Mathematics, vol. 93. Academic [Harcourt Brace Jovanovich Publishers], New York (1980)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewer for in-depth comments and helpful suggestions. The authors were partially supported by the NSF under Award No. CCF-1422252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somantika Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datta, S., Oldroyd, J. (2017). Finite Frame Theory. In: Wootton, A., Peterson, V., Lee, C. (eds) A Primer for Undergraduate Research. Foundations for Undergraduate Research in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-66065-3_7

Download citation

Publish with us

Policies and ethics