Skip to main content

Tile Invariants for Tackling Tiling Questions

  • Chapter
  • First Online:
Book cover A Primer for Undergraduate Research

Part of the book series: Foundations for Undergraduate Research in Mathematics ((FURM))

  • 1507 Accesses

Abstract

This article provides an introduction to techniques developed to address three types of tiling questions in the integer lattice: questions of tileability - which regions in a collection\(\mathcal{R}\) can be tiled by a tile set T; connectivity - what can be said about how two tilings of a region in\(\mathcal{R}\) must be related; and enumeration - how many ways can a region in\(\mathcal{R}\) be tiled by T. We place an emphasis on tile invariants, linear combinations among the number of copies of each tile that must persist in any tiling of a region. A tiler’s toolbox draws on content from combinatorics, number theory, group theory, and topology. Given their hands-on nature, their variety, and their relevance to the undergraduate curriculum, tiling questions continue to be a lively subject for undergraduate mathematics research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aanjaneya, M.: Tromino tilings of domino-deficient rectangles. Discret. Math. 309(4), 937–944 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ash, J.M., Golomb S.W.: Tiling deficient rectangles with trominoes. Math. Mag. 77(1), 46–55 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bright, A., Clark, J.G., Dunn C., Evitts, K., Hitchman, M.P., Keating, B., Whetter, B.: Tiling annular regions with skew and T-tetrominoes. Involve J. Math. 10(3), 505–521 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chinn, P., Grimaldi, R., Heubach, S.: Tiling with Ls and squares. J. Integer Seq. 10, Article 07.2.8 (2007)

    Google Scholar 

  5. Conway, J.H., Lagarias, J.C.: Tiling with polyominoes and combinatorial group theory. J. Combin. Theory Ser. A 53, 183–208 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fisher, M., Temperley, H.: Dimer problem in statistcal mechanics - an exact result. Philos. Mag. 6, 1061–1063 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  7. Golomb, S.W.: Checker boards and polyominoes. Am. Math. Mon. 61, 675–682 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hitchman, M.P.: The topology of tile invariants. Rocky Mt. J. Math. 45(2), 539–564 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kasteleyn, P.: The statistics of dimers on a lattice I. The number of dimer arrangements on a quadratic lattice Physica 27, 1209–1225 (1961)

    MATH  Google Scholar 

  10. Korn, M.: Geometric and algebraic properties of polyomino tilings. Ph.D. thesis, MIT (2004). http://hdl.handle.net/1721.1/16628

  11. Lester, C.: Tiling with T and skew tetrominoes. Querqus Linfield J. Undergrad. Res. 1(1), Article 3 (2012)

    Google Scholar 

  12. Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory, 2nd edn. Dover, New York (1976)

    MATH  Google Scholar 

  13. Moore C., Pak, I.: Ribbon tile invariants from signed area. J. Combin. Theory Ser. A 98, 1–16 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Muchnik R., Pak, I.: On tilings by ribbon tetrominoes. J. Combin. Theory Ser. A 88, 188–193 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pak, I.: Ribbon tile invariants. Trans. Am. Math. Soc. 352(12), 5525–5561 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Propp, J.: A pedestrian approach to a method of Conway, or, a tale of two cities. Math. Mag. 70(5), 327–340 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Propp, J.: Enumeration of tilings. In: Bona M. (ed.) Handbook of Enumerative Combinatorics. CRC Press, Boca Raton (2015)

    Google Scholar 

  18. Reid, M.: Tile homotopy groups. Enseign. Math. 49(1/2), 123–155 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Sheffield, S.: Ribbon tilings and multidimensional height functions. Trans. Am. Math. Soc. 354(12), 4789–4813 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thurston, W.P.: Conway’s tiling groups. Am. Math. Mon. 95, 757–773 (1990). special geometry issue

    Google Scholar 

  21. Ueno, C.: Matrices and tilings with right trominoes. Math. Mag. 81(5), 319–331 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Hitchman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hitchman, M.P. (2017). Tile Invariants for Tackling Tiling Questions. In: Wootton, A., Peterson, V., Lee, C. (eds) A Primer for Undergraduate Research. Foundations for Undergraduate Research in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-66065-3_3

Download citation

Publish with us

Policies and ethics