Skip to main content

Automated Extraction of Movement Rationales for Building Agent-Based Models: Example of a Red Colobus Monkey Group

  • Conference paper
  • First Online:
Agent-Based Models and Complexity Science in the Age of Geospatial Big Data

Part of the book series: Advances in Geographic Information Science ((AGIS))

  • 806 Accesses

Abstract

The study of animal movement has gained impetus in recent years with improvements in telemetric technologies which enable high resolution tracking, providing researchers with a wealth of animal “big-data”. Coupling such movement data with information about the environments in which the animal moves provides a rich data source that can be exploited to understand an animal’s rationale for movement, which in turn can be used to extract “rules” that govern movement. The extraction of rules can be done using spatial, statistical and machine learning techniques. Once the rules replicating patterns and predictors of movement have been “discovered”, they can be subsequently used to build simulation models (ABMs) to mimic in-silico the behaviours of both individuals and groups of animals. We use field data collected by tracking Red Colobus (Procolobus rufomitratus) monkey groups from Kibale National Park, combined with land cover and terrain information, to show how this might be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonnell TR, Sengupta R, Chapman C, Goldberg T (2010) An agent-based model of red colobus resources and disease dynamics implicates key resource sites as hotspots of disease dynamics. Ecol Model 221:2491–2500

    Article  Google Scholar 

  2. Kranstauber B, Cameron A, Weinzerl R, Fountain T, Tilak S, Wikelski M, Kays R (2011) The movebank data model for animal tracking. Environ Model Softw 26:834–835

    Article  Google Scholar 

  3. Malleson N, Birkin M (2013) Estimating individual behaviour from massive social data for an urban agent-based model. In: Koch A, Mandl P (eds) Modelling social phenomenon in spatial context: geosimulation, vol 2. LIT Verlag, Munster

    Google Scholar 

  4. Torrens P, Li X, Griffin W (2011) Building agent-based walking models by machine-learning on diverse databases of space-time trajectory samples. Trans GIS 15(s1):67–94

    Article  Google Scholar 

  5. Ward J, Evans A, Malleson N (2016) Dynamic calibration of agent-based models using data assimilation. R Soc Open Sci 3:150703

    Article  Google Scholar 

  6. Rodgers A, Anson P (1994) Animal-borne GPS: tracking the habitat; GPS World, pp 20–32

    Google Scholar 

  7. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci 105(49):19052–19059

    Article  Google Scholar 

  8. Burdett CL, Moen RA, Niemi G, Mech LD (2007) Defining space use and movements of Canada lynx with global positioning system telemetry. J Mammal 88(2):457–467

    Article  Google Scholar 

  9. Merrill S, Mech L (2003) The usefulness of GPS telemetry to study wolf circadian and social activity. Wildl Soc Bull 31(4):974–960

    Google Scholar 

  10. Ropert-Coudert Y, Wilson R (2005) Trends and perspectives in animal-attached remote sensing. Front Ecol Environ 3(8):437–444

    Article  Google Scholar 

  11. Demšar U, Buchin K, Cagnacci F, Safi K, Speckmann B, Van de Weghe N, Weiskopf D, Weibel R (2015) Analysis and visualisation of movement: an interdisciplinary review. Move Ecol 3(1):1–24

    Article  Google Scholar 

  12. Heinrich B (1988) Winter foraging at carcasses by three sympatric corvids, with emphasis on recruitment by the raven, Corvus corax. Behav Ecol Sociobiol 23:141–156

    Article  Google Scholar 

  13. Boinski S, Garber PA (2000) On the move: how and why animals travel in groups. University of Chicago Press, Chicago

    Google Scholar 

  14. Janmaat KRL, Byrne RW, Zuberbuhler K (2006) Evidence for a spatial memory of fruiting states of rainforest trees in wild mangabeys. Anim Behav 72:797–807

    Article  Google Scholar 

  15. Janmaat KRL, Chapman CA, Meijer R, Zuberbuhler K (2012) The use of fruiting synchrony by foraging mangabey monkeys: a ‘simple tool’ to find fruit. Anim Cogn 15:83–96

    Article  Google Scholar 

  16. King AJ, Sueur C (2011) Where next? Group coordination and decision making by primate. Int J Primatol 32:1245–1267. doi:10.1007/s10764-011-9526-7

    Article  Google Scholar 

  17. Sarkar D, Chapman C, Griffin L, Sengupta R (2015) Analyzing animal movement characteristics from location data. Trans GIS 19(4):516–534

    Article  Google Scholar 

  18. Laube P, Wolle T, Gudmundsson J (2007) Movement patterns in spatio-temporal data. Encyclopedia of GIS

    Google Scholar 

  19. Long JA, Nelson TA (2013a) A review of quantitative methods for movement data. Int J Geograph Sci 27(2):292–318

    Article  Google Scholar 

  20. Abrahms B, Seidel D, Dougherty E, Hazen E, Bogard S, Wilson A, McNutt J, Costa D, Blake S, Brashares J, Getz W (2017) Suite of simple metrics reveals common movement syndromes across vertebrate taxa. Move Ecol 5:12–23

    Article  Google Scholar 

  21. Gao P, Kupfer JA, Zhu X, Guo D (2016) Quantifying animal trajectories using spatial aggregation and sequence analysis – a case study of differentiating trajectories of multiple species. Geogr Anal 48(3):275–291

    Article  Google Scholar 

  22. Long J, Nelson T, Wulder M (2010) Regionalization of landscape pattern indices using multivariate cluster analysis. Environ Manag 46(1):134–142

    Article  Google Scholar 

  23. Long JA, Nelson TA (2013b) Measuring dynamic interaction in movement data. Trans GIS 17(1):62–77

    Article  Google Scholar 

  24. Patterson TA, Basson M, Bravington MV, Gunn JS (2009) Classifying movement behaviour in relation to environmental conditions using hidden Markov models. J Anim Ecol 78(6):1113–1123

    Article  Google Scholar 

  25. Dodge S, Weibel R, Ahearn SC, Buchin M, Miller JA (2016) Analysis of movement data. Int J Geogr Inf Sci 30(5):825–834

    Article  Google Scholar 

  26. Bonnell TR, Campenni M, Chapman C, Gogarten J, Reyna-Hurtado R, Teichroeb J, Wasserman M, Sengupta R (2013) Emergent group level navigation: an agent-based evaluation of movement patterns in a folivorous primate. PLoS One 8(10):e78264. doi:10.1371/journal.pone.0078264

    Article  Google Scholar 

  27. Beyer HL (2012) Geospatial modelling environment (Version 0.7.2.0)

    Google Scholar 

  28. Dodge S, Bohrer G, Weinzierl R, Davidson SC, Kays R, Douglas D, Cruz S, Han J, Brandes D, Wikelski M (2013) The environmental-data automated track annotation (Env-DATA) system: linking animal tracks with environmental data. Move Ecol 1(1):1

    Article  Google Scholar 

  29. Chapman CA, Chapman LJ, Gillespie TR (2002) Scale issues in the study of primate foraging: red colobus of Kibale National Park. Am J Phys Anthropol 117:349–363

    Article  Google Scholar 

  30. Gebo DL, Chapman CA, Chapman LJ, Lambert J (1994) Locomotor response to predator threat in red colobus monkeys. Primates 35(2):219–223

    Article  Google Scholar 

  31. Boinski S, Treves A, Chapman CA (2000) A critical evaluation of the influence of predators on primates: effects on group travel. In: Boinski S, Garber PA (eds) On the move: how and why animals travel in groups. University of Chicago Press, Chicago, pp 43–72

    Google Scholar 

  32. Wessa P (2013) Classical decomposition (v1.0.4) in free statistics software (v1.1.23-r7), Office for research development and education, URL http://www.wessa.net/rwasp_decompose.wasp/

  33. Chapman CA, Wrangham R, Chapman LJ (1995) Ecological constraints on group size: an analysis of spider monkey and chimpanzee subgroups. Behav Ecol Sociobiol 36:59–70

    Article  Google Scholar 

  34. Struhsaker TT (1975) The red colobus monkey. Chicago University Press, Chicago

    Google Scholar 

  35. ESRI Inc (2017) ArcGIS 10.3. http://www.esri.com/arcgis

  36. University of Waikato (2017) WEKA 3.8, https://cs.waikato.ac.nz/weka

  37. Quinlan JR (1992) Learning with continuous classes. In: 5th Australian joint conference on artificial intelligence, vol 92, pp 343–348

    Google Scholar 

  38. Frank E, Wang Y, Inglis S, Holmes G, Witten I (1998) Using model trees for classification. Mach Learn 32(1):63–76

    Article  Google Scholar 

  39. Bonnell T, Chapman C, Sengupta R (2016) Interaction between scale and scheduling choices in simulations of spatial agents. Int J Geogr Inf Sci 30(10):2075–2088

    Google Scholar 

  40. Sengupta R, Sieber R (2007) Geospatial agents, agents everywhere…. Trans GIS 11(4):483–506

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Sengupta, R., Chapman, C.C., Sarkar, D., Bortolamiol, S. (2018). Automated Extraction of Movement Rationales for Building Agent-Based Models: Example of a Red Colobus Monkey Group. In: Perez, L., Kim, EK., Sengupta, R. (eds) Agent-Based Models and Complexity Science in the Age of Geospatial Big Data. Advances in Geographic Information Science. Springer, Cham. https://doi.org/10.1007/978-3-319-65993-0_5

Download citation

Publish with us

Policies and ethics