Skip to main content

Case Studies

  • Chapter
  • First Online:
Saturated Control of Linear Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 124))

  • 711 Accesses

Abstract

The aim of this chapter is to apply the results developed in the previous chapters to different real plants. The first application is about control of pH degree in a stirred tank, where a solution of high concentration of the acid ClH is mixed with water to obtain a liquid of controlled pH. The second application concerns the control of a nonlinear biological nitrogen removal process. Thus, design steps of an observer-based control scheme applied to the linearized model of a phenomenological model of the process are illustrated. The estimation algorithm is combined with the control technique to monitor the process. The goal of the control is the removal or at least the reduction of organic waste. The control law is based on the positive invariance concept that had shown efficiency in handling control constraints. The efficiency of both the control and the estimation is demonstrated via computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ait Rami , H. Ayad, F. Mesquine, Enlarging ellipsoidal invariant sets for constrained linear systems. Int. J. Innov. Comput. Inf. Control 3(5), 1097–1108 (2007)

    Google Scholar 

  2. G. Bastin, D. Dochain, On line estimation and adaptive control of bioreactors. Anal. Chim. Acta 243, 324 (1990)

    Article  Google Scholar 

  3. C.A. Belchiora, R.A. Araujo, J.A. Landeckb, Dissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy control. Comput. Chem. Eng. 37, 152–162 (2012)

    Article  Google Scholar 

  4. A. Benzaouia, The resolution of equation XA + XBX = HX and the pole assignment problem. IEEE Trans. Autom. Control 39(10), 2091–2095 (1994)

    Google Scholar 

  5. A. Benzaouia, F. Tadeo, F. Mesquine, The regulator problem for linear systems with saturation on the control and its increments or rate: an LMI approach. IEEE Circuit Syst. I 53, 2673–2680 (2006)

    Article  MathSciNet  Google Scholar 

  6. K.K. Biasizzo, I. Skrjanc, D. Matko, Fuzzy predictive control of highly nonlinear pH process. Comput. Chem. Eng. 21, s613–s618 (1997)

    Article  Google Scholar 

  7. B. Boulkroune, M. Darouach, M. Zasadzinski, S. Gille, D. Fiorelli, A nonlinear observer design for an activated sludge wastewater treatment process. J. Process Control 19, 1558–1565 (2009)

    Article  Google Scholar 

  8. D. Dochain, Design of adaptive controller for nonlinear stirred mnk bioreactors: extension to the MlMO situation. J. Process Control 1, 41–48 (1991)

    Article  Google Scholar 

  9. O. Galan, J.A. Romagnoli, A. Palazoglu, Robust \(H_{\infty }\) control of nonlinear plants based on multi-linear models: an application to a bench-scale pH neutralization reactor. Chem. Eng. Sci. 55, 4435–4450 (2000)

    Article  Google Scholar 

  10. T.F. Gustafsson, K.V. Waller, Nonlinear and adaptive control of pH. Ind. End. Chem. Res. 24, 809–817 (1992)

    Google Scholar 

  11. M. Henze, C.P. Leslie Grady, W. Gujerm, G.V.R. Maraism, T. Matsuo, Activated sludge Model No.1. I.A.W.Q., Scientific and technical Report No. 1, (1987)

    Google Scholar 

  12. J.B. Lassere, Reachable controllable sets and stabilizing control of constrained systems. Automatica 29, 531 (1993)

    Article  MathSciNet  Google Scholar 

  13. D.G. Luenberger, An introduction to observers. IEEE Trans. Autom. Control AC-16(6), 596–602 (1971)

    Google Scholar 

  14. F. Mesquine, Contribution à la commande des systèmes dynamiques discrets avec contraintes sur les entrées par application du concept d’invariance positive. Cadi Ayyad University, thèse de doctorat de troisième cycle (1992)

    Google Scholar 

  15. F. Mesquine, D. Mehdi, Constrained observer for linear continuous time systems. Int. J. Syst. Sci. 27(12), 1363–1369 (1996)

    Google Scholar 

  16. F. Mesquine, Contribution à la commande des systèmes linéaires à entrées contraintes par les observateurs et nouvelles méthodologie de placement de pôles. Cadi Ayyad University, thèse de doctorat d’état (1997)

    Google Scholar 

  17. F. Mesquine, F. Tadeo, A. Benzaouia, Regulator problem for linear systems with constraints on control and its increment or rate. Automatica 40(8), 1387–1395 (2004)

    Google Scholar 

  18. F. Mesquine, F. Tadeo, A. Benlamkadem, Constrained regulator problem for linear uncertain systems: control of a PH process. Math. Probl. Eng. (2006). doi:10.1155/MPE/2006/51874

  19. F. Nejjari, A. Benhammou, B. Dahhou, G. Roux, Nonlinear multivariable control of a biological wastewater treatment process, in 4th European Control Conference (Bruxelles, Belgique, 1997)

    Google Scholar 

  20. F. Nejjari, E. Dahhou, A. Benhammou, G. Roux, Nonlinear multivariable adaptive control of an activated sludge wastewater treatment process. Int. J. Adapt. Control Signal Process 13, 347–365 (1999)

    Article  MATH  Google Scholar 

  21. F. Nejjari, J. Quevedo, Predictive control of a nutrient removal biological plant, in American Control Conference, june 30–july 2 (Boston, Massachusetts, 2004)

    Google Scholar 

  22. M. O’Brien, J. Mack, B. Lennox, D. Lovett, A. Wall, Model predictive control of an activated sludge process: a case study. Control Eng. Pract. 19, 54–61 (2011)

    Article  Google Scholar 

  23. O. Pérez, F. Tadeo, P. Vega, Robust control of pH control plant, in Proceedings of the IEEE Conference on Control Applications (Albany, 1995)

    Google Scholar 

  24. Y. Smetsa Ilse, J.V. Haegebaerta, R. Carretteb, J.F. Van Impea, Linearization of the activated sludge model ASM1 for fast and reliable predictions. Water Res. 37, 1831–1851 (2003)

    Google Scholar 

  25. A. Stare, N. Hvala, D. Vrecko, Modeling, Identification, and validation of models for predictive ammonia control in a wastewater treatment plant-a case study. ISA Trans. 45(2), 159–174 (2006)

    Google Scholar 

  26. S.W. Sung, I.B. Lee, pH control using a simple set point change. Ind. Eng. Chem. Res. 34, 1730–1734 (1995)

    Article  Google Scholar 

  27. F. Tadeo, M. J. Grimble, Controller design using linear programming for systems with constraints. Part 1: Tutorial Introduction; Part 2: Controller Design; Part 3: Design Examples, IEE Comput. Control Eng. J. 12, 273–276 (2002), 13, 49–52, 89–93 (2003)

    Google Scholar 

  28. H. Zhao, S.H. Issacs, H. Soeberg, M. Kummel, Nonlinear optimal control of an allmating activated sludge process in a pilot plant. J. Process control 4, 33–43 (1994)

    Article  Google Scholar 

  29. B. Zhou, Q. Wang, Z. Lin, G. Duan, Gain scheduled Control of linear systems subject to actuator saturation with application to spacecraft rendezvous. IEEE Trans. Control Syst. Technol. 22(5), 2013–2038 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah Benzaouia .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Benzaouia, A., Mesquine, F., Benhayoun, M. (2018). Case Studies. In: Saturated Control of Linear Systems. Studies in Systems, Decision and Control, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-319-65990-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65990-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65989-3

  • Online ISBN: 978-3-319-65990-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics