Skip to main content

On the Fly Segmentation of Intravascular Ultrasound Images Powered by Learning of Backscattering Physics

  • Chapter
  • First Online:
Classification in BioApps

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 26))

Abstract

Intravascular ultrasound (IVUS) is commonly used as an adjunct to the imaging-based diagnosis of vascular plaques that have been primarily imaged with computed tomography angiography (CTA) or magnetic resonance angiography (MRA). Since speckle intensity in IVUS images are inherently stochastic in nature, clinicians face the critical challenge of identifying vessel boundaries. In this Introduction, we present a method for segmenting the lumen and external elastic laminae in IVUS images of coronary arteries via a two-stage framework. The first stage employs an understanding of the physics of the interaction between ultrasound and tissue as a statistical mechanical parametric framework, and ensemble learning of this parametric space to initialize lumen and external elastic luminae boundary contours. Subsequently, in the second stage, these initialized contours are solved using a random walker solution. While both stages are employed when segmenting individual IVUS frames, in the event of complete pullbacks, the two stages are employed on the first frame but only the second stage is employed on subsequent frames, using initialization propagated from the previously segmented frame as the basis for investigation. We have experimentally evaluated the approach using 77 IVUS frames acquired at 40 MHz and 10 IVUS pullbacks acquired at 20 MHz. Our approach obtains a Jaccard score of \(0.89 \pm 0.14\) and \(0.87 \pm 0.12\) for lumen and \(0.88 \pm 0.09\) and \(0.91 \pm 0.10\) for external elastic laminae segmentation on 40 and 20 MHz IVUS data, respectively, over a 10-fold cross-validation experiment. Our computationally lightweight implementation enables on-the-fly segmentation of IVUS frames of 40 MHz at 512 × 512 pixels and 20 MHz at 384 × 384 pixels on a PC-based system without any special accelerators within 1.2 ± 0.2s and 1.1 ± 0.2s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Adapted from https://upload.wikimedia.org/wikipedia/commons/d/d3/Blood_vessels-en.svg.

  2. 2.

    Adapted from https://upload.wikimedia.org/wikipedia/commons/9/9a/Endo_dysfunction_Athero.PNG.

  3. 3.

    http://campar.in.tum.de/Main/AthanasiosKaramalisCode.

  4. 4.

    http://scikit-image.org/docs/dev/auto_examples/segmentation/plot_random_walker_segmentation.html.

  5. 5.

    http://scikit-learn.org/stable/modules/generated/sklearn.ensemble. RandomForestClassifier.html.

  6. 6.

    http://www.cvc.uab.es/IVUSchallenge2011/dataset.html.

References

  1. Araki T, Ikeda N, Molinari F, Dey N, Acharjee S, Saba L, Suri J (2014) Link between automated coronary calcium volumes from intravascular ultrasound to automated carotid imt from b-mode ultrasound in coronary artery disease population. Int Angiol 33(4):392–403

    Google Scholar 

  2. Araki T, Ikeda N, Molinari F, Dey N, Acharjee SM, Saba L, Nicolaides A, Suri JS (2014) Effect of geometric-based coronary calcium volume as a feature along with its shape-based attributes for cardiological risk prediction from low contrast intravascular ultrasound. J Med Imaging Health Inf 4(2):255–261

    Article  Google Scholar 

  3. Araki T, Ikeda N, Dey N, Acharjee S, Molinari F, Saba L, Godia EC, Nicolaides A, Suri JS (2015) Shape-based approach for coronary calcium lesion volume measurement on intravascular ultrasound imaging and its association with carotid intima-media thickness. J Ultrasound Med 34(3):469–482

    Article  Google Scholar 

  4. Balocco S, Gatta C, Ciompi F, Wahle A, Radeva P, Carlier S, Unal G, Sanidas E, Mauri J, Carillo X et al (2014) Standardized evaluation methodology and reference database for evaluating ivus image segmentation. Comput Med Imaging Graph 38(2):70–90

    Article  Google Scholar 

  5. Bancroft JD, Gamble M (2008) Theory and practice of histological techniques. Elsevier, Churchill Livingstone

    Google Scholar 

  6. Biau G, Devroye L, Lugosi G (2008) Consistency of random forests and other averaging classifiers. J Mach Learn Res 9:2015–2033

    MATH  MathSciNet  Google Scholar 

  7. Bovenkamp EG, Dijkstra J, Bosch JG, Reiber JH (2009) User-agent cooperation in multiagent ivus image segmentation. IEEE Trans Med Imaging 28(1):94–105

    Article  Google Scholar 

  8. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  9. Cardinal M-HR, Meunier J, Soulez G, Maurice RL, Therasse É, Cloutier G (2006) Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions. IEEE Trans Med Imaging 25(5):590–601

    Article  Google Scholar 

  10. Ciompi F, Pujol O, Gatta C, Alberti M, Balocco S, Carrillo X, Mauri-Ferre J, Radeva P (2012) Holimab: a holistic approach for media–adventitia border detection in intravascular ultrasound. Med Image Anal 16(6):1085–1100

    Article  Google Scholar 

  11. Constantinides P (1966) Plaque fissures in human coronary thrombosis. J Atherosclerosis Res 6:1–17

    Article  Google Scholar 

  12. Criminisi A, Shotton J, Konukoglu E (2012) Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found Trends Comput Graph Vis 7(3):81–227

    MATH  Google Scholar 

  13. Davies MJ, Thomas AC (1985) Plaque fissuring: the case of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 53:363–373

    Article  Google Scholar 

  14. Destrempes F, Meunier J, Giroux M-F, Soulez G, Cloutier G (2009) Segmentation in ultrasonic b-mode images of healthy carotid arteries using mixtures of nakagami distributions and stochastic optimization. IEEE Trans Med Imaging 28(2):215–229

    Article  Google Scholar 

  15. Downe R, Wahle A, Kovarnik T, Skalicka H, Lopez J, Horak J, Sonka M (2008) Segmentation of intravascular ultrasound images using graph search and a novel cost function. In: Proceedings of medical image computing computer assisted intervention workshop, computer vision intravascular intracardiac imaging, pp 71–79

    Google Scholar 

  16. Dumane VA, Shankar PM (2001) Use of frequency diversity and Nakagami statistics in ultrasonic tissue characterization. IEEE Trans Ultrason Ferroelectr Freq Control 48(4):1139–1146

    Article  Google Scholar 

  17. Falk E (1983) Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis: characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 53:127–134

    Article  Google Scholar 

  18. Gil D, Hernández A, Rodriguez O, Mauri J, Radeva P (2006) Statistical strategy for anisotropic adventitia modelling in ivus. IEEE Trans Med Imaging 25(6):768–778

    Article  Google Scholar 

  19. Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783

    Article  Google Scholar 

  20. Herrington DM, Johnson T, Santago P, Snyder WE (1992) Semi-automated boundary detection for intravascular ultrasound. In: Proceedings of computers cardiology conference, pp 103–106

    Google Scholar 

  21. Karamalis A, Wein W, Klein T, Navab N (2012) Ultrasound confidence maps using random walks. Med Image Anal 16(6):1101–1112

    Article  Google Scholar 

  22. Klingensmith JD, Shekhar R, Vince DG (2000) Evaluation of three-dimensional segmentation algorithms for the identification of luminal and medial-adventitial borders in intravascular ultrasound images. IEEE Trans Med Imaging 19(10):996–1011

    Article  Google Scholar 

  23. Mendizabal-Ruiz EG, Rivera M, Kakadiaris IA (2013) Segmentation of the luminal border in intravascular ultrasound b-mode images using a probabilistic approach. Med Image Anal 17(6):649–670

    Article  Google Scholar 

  24. Moreno PR, Lodder RA, Purushothaman KR, Charash WE, Oconnor WN, Muller JE (2002) Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 105(8):923–927

    Article  Google Scholar 

  25. Müller J, Tofler GH (1989) Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 793:733–743

    Article  Google Scholar 

  26. Müller J, Abela GS, Nesto RW (1994) Triggers, acute risk factors and vulnerable plaques: the lexicon of a new frontier. Am J Cardiol 23:809–813

    Article  Google Scholar 

  27. Nag MK, Mandana K, Sadhu AK, Mitra P, Chakraborty C (2016) Automated in vivo delineation of lumen wall using intravascular ultrasound imaging. In: Proceedings of international conference engineering medical biology society, pp 4125–4128

    Google Scholar 

  28. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G (2003) From vulnerable plaques to vulnerable patients: a call for new definitions and risk assessment strategies: part I. Circulation 108:1664–1672

    Article  Google Scholar 

  29. Narula J, Nakano M, Virmani R, Kolodgie FD, Petersen R, Newcomb R, Malik S, Fuster V, Finn AV (2013) Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol 61(10):1041–1051

    Article  Google Scholar 

  30. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  31. Plissiti ME, Fotiadis DI, Michalis LK, Bozios GE (2004) An automated method for lumen and media-adventitia border detection in a sequence of ivus frames. IEEE Trans Inf Tech Biomed 8(2):131–141

    Article  Google Scholar 

  32. Prives M (1985) Human anatomy. Mir Publisher

    Google Scholar 

  33. Roleder T, Jakala J, Kaluza GL, Partyka L, Proniewska K, Pociask E, Zasada W, Wojakowski W, Gasior Z, Dudek D (2015) The basics of intravascular optical coherence tomography. Postepy Kardiol Interwencyjnej 11(2):74–83

    Google Scholar 

  34. Sakuma H, Ichikawa Y, Chino S, Hirano T, Makino K, Takeda K (2006) Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol 48(10):1946–1950

    Article  Google Scholar 

  35. Saleh B (2011) Introduction to subsurface imaging. Cambridge University Press, Cambridge

    Google Scholar 

  36. Sen PK, Singer JM (1994) Large sample methods in statistics: an introduction with applications 25

    Google Scholar 

  37. Shankar PM (1995) A model for ultrasonic scattering from tissues based on the k distribution. Phy Med Biol 40(10):1633–1649

    Article  Google Scholar 

  38. Shankar PM (2000) A general statistical model for ultrasonic backscattering from tissues. IEEE Trans Ultrason Ferroelectr Freq Control 47(3):727–736

    Article  Google Scholar 

  39. Shankar PM, Dumane VA, Reid JM, Genis V, Forsberg F, Piccoli CW, Goldberg BB (2001) Classification of ultrasonic b-mode images of breast masses using Nakagami distribution. IEEE Trans Ultrason Ferroelectr Freq Control 48(2):569–580

    Article  Google Scholar 

  40. Shankar PM, Dumane VA, George T, Piccoli CW, Reid JM, Forsberg F, Goldberg BB (2003) Classification of breast masses in ultrasonic b scans using Nakagami and k distributions. Phys Med Biol 48(14):2229–2240

    Article  Google Scholar 

  41. Shankar PM, Dumane VA, Piccoli CW, Reid JM, Forsberg F, Goldberg BB (2003) Computer-aided classification of breast masses in ultrasonic b-scans using a multiparameter approach. IEEE Trans Ultrason Ferroelectr Freq Control 50(8):1002–1009

    Article  Google Scholar 

  42. Shankar P (2003) Estimation of the Nakagami parameter from log-compressed ultrasonic backscattered envelopes (l). J Acoust Soc Am 114(1):70–72

    Article  Google Scholar 

  43. Sheet D, Karri SPK, Conjeti S, Ghosh S, Chatterjee J, Ray AK (2013a) Detection of retinal vessels in fundus images through transfer learning of tissue specific photon interaction statistical physics. In: Proceedings of IEEE International Symposium Biomedical Imaging, pp 1452–1456

    Google Scholar 

  44. Sheet D, Karamalis A, Kraft S, Noël PB, Vag T, Sadhu A, Katouzian A, Navab N, Chatterjee J, Ray AK (2013b) Random forest learning of ultrasonic statistical physics and object spaces for lesion detection in 2D sonomammography. In: Proceedings of SPIE Medical Imaging, pp 867515–867515

    Google Scholar 

  45. Sheet D, Karamalis A, Eslami A, Noël P, Virmani R, Nakano M, Chatterjee J, Ray AK, Laine AF, Carlier SG et al (2014) Hunting for necrosis in the shadows of intravascular ultrasound. Comput Med Imaging Graph 38(2):104–112

    Article  Google Scholar 

  46. Sheet D, Karamalis A, Eslami A, Noël P, Chatterjee J, Ray AK, Laine AF, Carlier SG, Navab N, Katouzian A (2014) Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound. Med Image Anal 18(1):103–117

    Article  Google Scholar 

  47. Shekhar R, Cothren R, Vince DG, Chandra S, Thomas J, Cornhill J (1999) Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images. Comput Med Imaging Graph 23(6):299–309

    Article  Google Scholar 

  48. Sonka M, Zhang X, Siebes M, Bissing MS, DeJong SC, Collins SM, McKay CR (1995) Segmentation of intravascular ultrasound images: A knowledge-based approach. IEEE Trans Med Imaging 14(4):719–732

    Article  Google Scholar 

  49. Sun S, Sonka M, Beichel RR (2013) Graph-based ivus segmentation with efficient computer-aided refinement. IEEE Trans Med Imaging 32(8):1536–1549

    Article  Google Scholar 

  50. Unal G, Bucher S, Carlier S, Slabaugh G, Fang T, Tanaka K (2008) Shape-driven segmentation of the arterial wall in intravascular ultrasound images. IEEE Trans Inf Tech Biomed 12(3):335–347

    Article  Google Scholar 

  51. Voros S, Rinehart S, Qian Z, Joshi P, Vazquez G, Fischer C, Belur P, Hulten E, Villines TC (2011) Coronary atherosclerosis imaging by coronary ct angiography: current status, correlation with intravascular interrogation and meta-analysis. J Am Coll Cardiol 4(5):537–548

    Article  Google Scholar 

  52. Yue Y, Clark JW, Khoury DS (2009) Speckle tracking in intracardiac echocardiography for the assessment of myocardial deformation. IEEE Trans Biomed Eng 56(2):416–425

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debdoot Sheet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

China, D., Mitra, P., Sheet, D. (2018). On the Fly Segmentation of Intravascular Ultrasound Images Powered by Learning of Backscattering Physics. In: Dey, N., Ashour, A., Borra, S. (eds) Classification in BioApps. Lecture Notes in Computational Vision and Biomechanics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-65981-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65981-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65980-0

  • Online ISBN: 978-3-319-65981-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics