Skip to main content

Spectroscopic-Imaging STM (SI-STM)

  • Chapter
  • First Online:
Visualising the Charge and Cooper-Pair Density Waves in Cuprates

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter I detail the main experimental technique used in this thesis: Spectroscopic-Imaging Scanning Tunnelling Microscopy (SI-STM). I outline the theoretical basis for its use as a tunnelling spectroscopy of superconductors as well as data analysis techniques specific to cuprate superconductors. I also give details of the cuprate samples studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Binnig, H. Rohrer, Scanning tunneling microscopy. Surf. Sci. 126(126), 236–244 (1982)

    ADS  Google Scholar 

  2. K. Fujita et al., Spectroscopic imaging scanning tunneling microscopy studies of electronic structure in the superconducting and pseudogap phases of cuprate high-tc superconductors. J. Phys. Soc. Jpn. 81(1), 011005 (2012)

    Article  ADS  Google Scholar 

  3. A. Yazdani, E.H. da Silva Neto, P. Aynajian, Spectroscopic imaging of strongly correlated electronic states. Ann. Rev. Condensed Matter Phys. 7(1), 11–33 (2016)

    Article  ADS  Google Scholar 

  4. L. Esaki, New phenomenon in narrow germanium p-n junctions. Phys. Rev. 109(2), 603–604 (1958)

    Article  ADS  Google Scholar 

  5. I. Giaever, Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett. 5(4), 147–148 (1960)

    Article  ADS  Google Scholar 

  6. J. Bardeen, Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6(2), 6–8 (1961)

    Article  Google Scholar 

  7. M.H. Cohen, L.M. Falicov, J.C. Phillips, Superconductive tunneling. Phys. Rev. Lett. 8(8), 316–318 (1962)

    Article  ADS  MATH  Google Scholar 

  8. J. Hoffman, Search for alternative electronic order in the by scanning tunneling high temperature superconductor Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_8+\delta \) by scanning tunneling microscopy. Ph.D. thesis. University of California, Berkeley (2003)

    Google Scholar 

  9. W.A. Harrison, Tunneling from an independent-particle point of view. Phys. Rev. 123(1), 85–89 (1961)

    Article  ADS  Google Scholar 

  10. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108(5), 1175–1204 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. B. Josephson, Possible new effects in superconductive tunnelling. Phys. Lett. 1(7), 251–253 (1962)

    Article  ADS  MATH  Google Scholar 

  12. J. Bardeen, Tunneling into superconductors. Phys. Rev. Lett. 9(4), 147–149 (1962)

    Article  ADS  MATH  Google Scholar 

  13. M. Tinkham, Introduction to Superconductivity (McGraw-Hill Book Co., New York, 1975)

    Google Scholar 

  14. Adapted from IAP/TU Wien STM Gallery under Creative Commons Attribution ShareAlike 2.0 Austria License

    Google Scholar 

  15. J. Tersoff, D.R. Hamann, Theory of the scanning tunneling microscope. Phys. Rev. B 31(2), 805–813 (1985)

    Article  ADS  Google Scholar 

  16. C.J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, Oxford, 2007), pp. 1–40

    Google Scholar 

  17. S.H. Pan, E.W. Hudson, J.C. Davis, 3He refrigerator based very low temperature scanning tunneling microscope. Rev. Sci. Instrum. 70(2), 1459 (1999)

    Article  ADS  Google Scholar 

  18. M.H. Hamidian, Imaging the Realm of the Strongly Correlated: Visualising Heavy Fermion Formation and The Impact of Kondo Holes in URu2Si2. Ph.D. thesis. Cornell University (2011)

    Google Scholar 

  19. E.W. Hudson, Investigating High-Tc Superconductivity on the Atomic Scale by Scanning Tunneling Microscopy (1994)

    Google Scholar 

  20. C.B. Taylor, Coexistence of Bogoliubov Quasiparticles and Electronic Cluster Domains in Lightly Hole-Doped Cuprate Superconductors. Ph.D. thesis. Cornell University (2008), p. 211

    Google Scholar 

  21. M. Zhiqiang et al., Relation of the superstructure modulation and extra-oxygen local-structural distortion in Bi. Phys. Rev. B 55(14), 9130–9135 (1997)

    Article  ADS  Google Scholar 

  22. X.B. Kan, S.C. Moss, Fourdimensional crystallographic analysis of the incommensurate modulation in a Bi2Sr2CaCu2O8 single crystal. Acta Crystallogr. Sect. B 48(2), 122–134 (1992)

    Article  Google Scholar 

  23. J.A. Slezak, Atomic-Scale Impact of Unit Cell Dimensions on Pairing in a High-Temperature Superconductor. Ph.D. thesis. Cornell University (2007)

    Google Scholar 

  24. Y. Kohsaka et al., Growth of Na-doped Ca2CuO2Cl2 single crystals under high pressures of several GPa. J. Am. Chem. Soc. 124(41), 12275–12278 (2002)

    Article  Google Scholar 

  25. T. Hanaguri et al. A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca\(_2\)-xNaxCuO\(_2\)Cl\(_2\). Nature 430, 1001–1005 (2004)

    Google Scholar 

  26. M.F. Crommie, C.P. Lutz, D.M. Eigler, Imaging standing waves in a two-dimensional electron gas. Nature 363, 524 (1993)

    Article  ADS  Google Scholar 

  27. Q.-H. Wang, D.-H. Lee, Quasiparticle scattering interference in hightemperature superconductors. Phys. Rev. B 67(2), 020511 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Edkins .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Edkins, S. (2017). Spectroscopic-Imaging STM (SI-STM). In: Visualising the Charge and Cooper-Pair Density Waves in Cuprates . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-65975-6_2

Download citation

Publish with us

Policies and ethics