Skip to main content

Introduction to Unconventional Superconductivity and Density Waves in Cuprates

  • Chapter
  • First Online:
Visualising the Charge and Cooper-Pair Density Waves in Cuprates

Part of the book series: Springer Theses ((Springer Theses))

  • 646 Accesses

Abstract

Superconductors, known for their ability to conduct electricity without resistance, are fairly common in nature. This is a result of the fact that, despite the strong interactions between their electrons, most of the metals we know can be described by a liquid of electron-like quasi-particles. This liquid, known as a Fermi liquid, is intrinsically unstable to the formation of superconductivity. The vast majority of these superconductors only superconduct below a transition temperature which is within a few degrees of absolute zero, limiting their widespread commercial exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Bednorz, K. Muller, Possible high Tc superconductivity in the Ba - La - Cu - O system. Zeitschrift für Phys. B Condens. Matter 64, 189–193 (1986)

    Article  ADS  Google Scholar 

  2. J.G. Bednorz, K.A. Müller, Perovskite-type oxides - the new approach to high-tc superconductivity. Nobel Lect. Phys. 1981–1990, 424–457 (1993)

    Google Scholar 

  3. A.P. Drozdov et al., Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525(7567), 73–76 (2015)

    Article  ADS  Google Scholar 

  4. P.W. Anderson, Basic Notions in Condensed Matter Physics (The Benjamin/Cummings Publishing Company, Menlo Park, 1984)

    Google Scholar 

  5. L.D. Landau, Collected Papers of L.D. Landau (Gordon and Breach, New York, 1965)

    Google Scholar 

  6. W. Meissner, R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitfhigkeit. Die Naturwissenschaften 21(44), 787–788 (1933)

    Article  ADS  Google Scholar 

  7. D.V. Delft, P. Kes, The discovery of superconductivity. Phys. Today 63(9), 38–42 (2010)

    Article  Google Scholar 

  8. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108(5), 1175–1204 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. T. Giamarchi, Quantum Physics in One Dimension, vol. 6. 38 (Oxford University Press, Oxford, 2003), pp. 1–28

    Google Scholar 

  10. N.N. Bogoliubov, On a new method in the theory of superconductivity. Il Nuovo Cimento 7(6), 794–805 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  11. C. Tsuei, J. Kirtley, Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72(4), 969–1016 (2000)

    Article  ADS  Google Scholar 

  12. M. Tinkham, Tunneling generation, relaxation, and tunneling detection of holeelectron imbalance in superconductors. Phys. Rev. B 6(5), 1747–1756 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Ogata, H. Fukuyama, The t - J model for the oxide high-Tc superconductors. Rep. Prog. Phys. 71(3), 36501 (2008)

    Google Scholar 

  14. J. Zaanen, G.A. Sawatzky, J.W. Allen, Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55(4), 418–421 (1985)

    Article  ADS  Google Scholar 

  15. A. Fujimori et al., Spectroscopic evidence for strongly correlated electronic states in La-Sr-Cu and Y-Ba-Cu oxides. Phys. Rev. B 35(16), 8814–8817 (1987)

    Article  ADS  Google Scholar 

  16. T. Takahashi et al., Synchrotron-radiation photoemission study of the high-Tc Superconductor YBa\(_2\)Cu\(_3\)O\(_7-\delta \). Phys. Rev. B 36(10), 5686–5689 (1987)

    Article  ADS  Google Scholar 

  17. A. Bianconi et al., Localization of Cu 3d levels in the high Tc superconductor YBa2Cu3O7by Cu 2p X-ray photoelectron spectroscopy. Solid State Commun. 63(12), 1135–1139 (1987)

    Article  ADS  Google Scholar 

  18. V.J. Emery, Theory of high-Tc superconductivity in oxides. Phys. Rev. Lett. 58(26), 2794–2797 (1987)

    Article  ADS  Google Scholar 

  19. F.C. Zhang, T.M. Rice, Effective hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37(7), 3759–3761 (1988)

    Article  ADS  Google Scholar 

  20. P. Fazekas, Lecture Notes on Electron Correlation and Magnetism (World Scientific, Singapore, 1999)

    Book  Google Scholar 

  21. L. Gao et al., Superconductivity up to 164 K in HgBa\(_2\)Ca\(m-1\)Cu\(_m\)O\(2m+2+\delta \) (m = 1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B 50(6), 4260–4263 (1994)

    Article  ADS  Google Scholar 

  22. J.N. Bruin et al., Similarity of scattering rates in metals showing t-linear resistivity. Science 339(6121), 804–807 (2013)

    Article  ADS  Google Scholar 

  23. B. Keimer et al., From quantum matter to high-temperature superconductivity in copper oxides. Nature 518(7538), 179–86 (2015)

    Article  ADS  Google Scholar 

  24. A. Damascelli, Z. Hussain, Z.-X. Shen, Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75(2), 473–541 (2003)

    Article  ADS  Google Scholar 

  25. A.A. Kordyuk, Pseudogap from ARPES experiment: three gaps in cuprates and topological superconductivity. Low Temp. Phys. 41(5), 319–341 (2015)

    Article  ADS  Google Scholar 

  26. Fischer et al., Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79(1), 353–419 (2007)

    Article  ADS  Google Scholar 

  27. K. Fujita et al., Spectroscopic Imaging scanning tunneling microscopy studies of electronic structure in the superconducting and pseudogap phases of cuprate high-tc superconductors. J. Phys. Soc. Jpn. 81(1), 011005 (2012)

    Article  ADS  Google Scholar 

  28. A. Yazdani, E.H. da Silva Neto, P. Aynajian., Spectroscopic imaging of strongly correlated electronic states. Annu. Rev. Condens. Matter Phys. 7(1), 11–33 (2016)

    Article  ADS  Google Scholar 

  29. K. Fujita et al., Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking. Science 344(6184), 612–616 (2014)

    Article  ADS  Google Scholar 

  30. Y. He et al., Fermi surface and pseudogap evolution in a cuprate superconductor. Science 344(6184), 608–11 (2014)

    Article  ADS  Google Scholar 

  31. I.M. Vishik et al., A momentum-dependent perspective on quasiparticle interference in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_8+\delta \). Nat. Phys. 5(10), 718–721 (2009)

    Article  Google Scholar 

  32. M.J. Lawler et al., Intra-unit-cell electronic nematicity of the high-Tc copperoxide pseudogap states. Nature 466(7304), 347–51 (2010)

    Article  ADS  Google Scholar 

  33. Y. Li et al., Hidden magnetic excitation in the pseudogap phase of a high-Tc superconductor. Nature 468(7321), 283–285 (2010)

    Article  ADS  Google Scholar 

  34. P. Hosur et al., Kerr effect as evidence of gyrotropic order in the cuprates. Phys. Rev. B 87(11), 1–8 (2013)

    Article  Google Scholar 

  35. J. Xia et al., Polar kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor: evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100(12), 3–6 (2008)

    Article  Google Scholar 

  36. H. Karapetyan et al., Magneto-optical measurements of a cascade of transitions in superconducting La1:875Ba0:125CuO4 single crystals. Phys. Rev. Lett. 109(14), 1–5 (2012)

    Article  Google Scholar 

  37. P. Hosur et al., Erratum: Kerr effect as evidence of gyrotropic order in the cuprates. Phys. Rev. B 87, 115116 (2013): Phys. Rev. B 91.3, 039908 (2015)

    Google Scholar 

  38. G. Gruner, Density Waves in Solids (Perseus, Cambridge, 1994)

    Google Scholar 

  39. R. Peierls, Quantum Theory of Solids (Oxford University Press, Oxford, 1955)

    MATH  Google Scholar 

  40. J.M. Tranquada et al., Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375(6532), 561–563 (1995)

    Article  ADS  Google Scholar 

  41. A.R. Moodenbaugh et al., Superconducting properties of La2.xBaxCuO4. Phys. Rev. B 38(7), 4596–4600 (1988)

    Article  ADS  Google Scholar 

  42. P. Abbamonte et al., Spatially modulated ‘Mottness’ in La2.xBaxCuO4. Nat. Phys. 1(3), 155–158 (2005)

    Article  Google Scholar 

  43. C. Howald et al., Periodic density-of-states modulations in superconducting Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_8+\delta \). Phys. Rev. B 67(1), 014533 (2003)

    Article  ADS  Google Scholar 

  44. W.D. Wise et al., Charge density wave origin of cuprate checkerboard visualized by scanning tunneling microscopy. Nat. Phys. 4, 696 (2008)

    Article  Google Scholar 

  45. J.E. Hoffman et al., A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_8+\delta \). Science 295(5554), 466–469 (2002)

    Article  ADS  Google Scholar 

  46. T. Hanaguri et al., A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2-xNaxCuO2Cl2. Nature 430, 1001–1005 (2004)

    Article  ADS  Google Scholar 

  47. G. Ghiringhelli et al., Long-range incommensurate charge fluctuations in (Y, Nd)Ba2Cu3O6+x. Science 337(6096), 821–825 (2012)

    Article  ADS  Google Scholar 

  48. E. Blackburn et al., X-Ray diffraction observations of a charge-density-wave order in superconducting ortho-II YBa2Cu3O6:54. Phys. Rev. Lett. 110(13), 137004 (2013)

    Article  ADS  Google Scholar 

  49. J. Chang et al., Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6:67. Nat. Phys. 8(12), 871–876 (2012)

    Article  Google Scholar 

  50. W. Tabis et al., Charge order and its connection with Fermi-liquid charge transport in a pristine high-Tc cuprate. Nat. Commun. 5, 5875 (2014)

    Article  Google Scholar 

  51. N. Doiron-Leyraud et al., Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447(7144), p. 565 (2007)

    Google Scholar 

  52. N. Barišić et al., Universal quantum oscillations in the underdoped cuprate superconductors. Nat. Phys. 9(12), 761–764 (2013)

    Article  Google Scholar 

  53. S.E. Sebastian, N. Harrison, G.G. Lonzarich, Towards resolution of the Fermi surface in underdoped high-tc superconductors. Rep. Prog. Phys. 75(10), 102501 (2012)

    Article  ADS  Google Scholar 

  54. S. Gerber et al., Three-dimensional charge density wave order in YBa\(_2\)Cu\(_3\)O\(_6.67\) at high magnetic fields. Science 350(6263), 949–952 (2015)

    Article  Google Scholar 

  55. J. Chang et al., Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3O6+x. Nat. Commun. 7, 11494 (2016)

    Article  ADS  Google Scholar 

  56. H. Jang et al., Ideal charge density wave order in the high-field state of superconducting YBCO (2016). arXiv:1607.05359

  57. T. Wu et al., Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature 477(7363), 191–4 (2011)

    Article  ADS  Google Scholar 

  58. R. Comin, A. Damascelli, Resonant x-ray scattering studies of charge order in cuprates 1–26 (2015)

    Google Scholar 

  59. M. Vojta, Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity. Adv. Phys. 58(6), 699–820 (2009)

    Article  ADS  Google Scholar 

  60. B.J. Ramshaw et al., Quasiparticle mass enhancement approaching optimal doping in a high-tc superconductor. Science 1–9 (2015)

    Google Scholar 

  61. A.I. Larkin, Y.N. Ovchinnikov, Inhomogeneous state of superconductors. Sov. Phys. JETP 20, 762–769 (1964)

    MathSciNet  Google Scholar 

  62. P. Fulde, R.A. Ferrell, Superconductivity in a strong spin-exchange field. Phys. Rev. 135(3A), A550–A563 (1964)

    Article  ADS  Google Scholar 

  63. E. Berg, E. Fradkin, S.A. Kivelson, Theory of the striped superconductor. Phys. Rev. B 79(6), 1–15 (2009)

    Article  Google Scholar 

  64. R. Anglani et al., Crystalline color superconductors. Rev. Mod. Phys. 86(2), 509–561 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Edkins .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Edkins, S. (2017). Introduction to Unconventional Superconductivity and Density Waves in Cuprates. In: Visualising the Charge and Cooper-Pair Density Waves in Cuprates . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-65975-6_1

Download citation

Publish with us

Policies and ethics