Skip to main content

Using Industry 4.0 Technologies for Teaching and Learning in Education Process

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 644))

Abstract

It is a well-known fact that if the teaching of theoretical knowledge is supplemented by practical exercises, greater learning efficiency is achieved. This contribution shows in this regard the modernized task of measuring asynchronous motor characteristics using Industry 4.0 advanced technologies. The introduced modernization consists in the improvement of obsolete measurement by automated data collection with the possibility of subsequent processing, archiving, visualization and creation of a measurement report. The whole solution is implemented through DAQ devices from National Instruments and Microsoft SQL Server.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hadas, Z., Brezina, T., Andrs, O., et al.: Simulation modelling of mechatronic system with flexible parts. In: 2012 15th International Power Electronics and Motion Control Conference (2012)

    Google Scholar 

  2. Kovář, J., Andrš, O.: Particle swarm optimization technique applied to image recognition using delta robot. In: Proceedings of the 17th International Conference on Soft Computing, Brno, CR, pp. 67–72 (2011)

    Google Scholar 

  3. Richert, A., Shehadeh, M., Plumanns, L., et al.: Educating engineers for industry 4.0: virtual worlds and human-robot-teams: empirical studies towards a new educational age. In: 2016 IEEE Global Engineering Education Conference, pp. 142–149. IEEE (2016)

    Google Scholar 

  4. Andrs, O., Hadas, Z., Kovar, J., et al.: Model-based design of mobile platform with integrated actuator – design with respect to mechatronic education (2014). doi:10.1007/978-3-319-02294-9

  5. Mortl, A., Lawitzky, M., Kucukyilmaz, A., et al.: The role of roles: physical cooperation between humans and robots. Int. J. Robot. Res. 31, 1656–1674 (2012). doi:10.1177/0278364912455366

    Article  Google Scholar 

  6. Kovar, J., Mouralova, K., Ksica, F., et al.: Virtual reality in context of industry 4.0. In: Maga, D., Stefek, A., Brezina, T. (eds.) 2016 Proceedings of the 17th International Conference on Mechatronics – Mechatronika 2016, pp. 1–7 (2016)

    Google Scholar 

  7. Prieto-Blazquez, J., Arnedo-Moreno, J., Herrera-Joancomarti, J.: An integrated structure for a virtual networking laboratory. IEEE Trans. Ind. Electron. 55, 2334–2342 (2008). doi:10.1109/TIE.2008.921231

    Article  Google Scholar 

  8. Casini, M., Prattichizzo, D., Vicino, A.: Operating remote laboratories through a bootable device. IEEE Trans. Ind. Electron. 54, 3134–3140 (2007). doi:10.1109/TIE.2007.907026

    Article  Google Scholar 

  9. Donzellini, G., Ponta, D.: A simulation environment for e-learning in digital design. IEEE Trans. Ind. Electron. 54, 3078–3085 (2007). doi:10.1109/TIE.2007.907011

    Article  Google Scholar 

  10. Andrš, O., Březina, T.: Design of fuzzy logic controller for DC motor. In: Mechatronics Recent Technological and Scientific Advances, pp. 9–18. Springer, Varšava (2011)

    Google Scholar 

  11. Andrs, O., Hadas, Z., Kovar, J.: Introduction to design of speed controller for fuel pump. In: Brezina, T., Maga, D., Stefek, A. (eds.) 2014 Proceedings of the 16th International Conference on Mechatronics (Mechatronika 2014), pp. 672–676 (2014)

    Google Scholar 

  12. Andrs, O., Kovar, J., Rucka, J.: Design of test device for automatic pressure sewerage control unit. In: Maga, D., Stefek, A., Brezina, T. (eds.) 2016 Proceedings of the 17th International Conference on Mechatronics—Mechatronika 2016, pp. 55–60 (2016)

    Google Scholar 

  13. Hadas, Z., Vetiska, V., Smilek, J. et al.: Efficiency of electromagnetic vibration energy harvesting system. In: Smart Sensors, Actuators, MEMS VII; Cyber Physical Systems (2015). doi:10.1117/12.2178448

  14. Hadas, Z., Vetiska, V., Singule, V., et al.: Energy harvesting from mechanical shocks using a sensitive vibration energy harvester. Int J. Adv. Robot. Syst. (2012). doi:10.5772/53948

    Google Scholar 

  15. Kovar, J., Rucka, J., Andrs, O.: Simulation modelling of water-supply network as mechatronic system. In: Brezina, T., Maga, D., Stefek, A. (eds.) Proceedings of the 2014 16th International Conference on Mechatronics (Mechatronika 2014), pp. 697–700 (2014)

    Google Scholar 

  16. Rucka, J., Andrs, O., Kovar, J.: Design of the pump controller of the low pressure sewer network. MM Sci. J. 2016, 1654–1658 (2016). doi:10.17973/MMSJ.2016_12_2016205

    Article  Google Scholar 

  17. Holub, M., Michalíček, M., Vetiška, J., Marek, J.: Prediction of machining accuracy for vertical lathes. In: Mechatronics 2013 Recent Technological and Scientific Advances, pp. 41–48. Springer (2013)

    Google Scholar 

  18. Augste, J., Holub, M., Knoflíček, R. et al.: Monitoring of energy flows in the production machines. In: Mechatronics 2013, pp. 1–7. Springer, Cham (2014)

    Google Scholar 

  19. Liu, Y., Xu, X.: Industry 4.0 and cloud manufacturing: a comparative analysis. J. Manuf. Sci. Eng. 139(3), 34701 (2016). doi:10.1115/1.4034667

    Article  MathSciNet  Google Scholar 

  20. Vasić, V.S., Lazarevic, M.P.: Standard industrial guideline for mechatronic product design. FME Trans. 36, 103–108 (2008)

    Google Scholar 

  21. Sipsas, K., Alexopoulos, K., Xanthakis, V., Chryssolouris, G.: Collaborative maintenance in flow-line manufacturing environments: an industry 4.0 approach. Procedia CIRP 55, 236–241 (2016). doi:10.1016/j.procir.2016.09.013

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported from research project FSI-S-17-4477 “Zvysovani technicke vyspelosti vyrobnich stroju a zarizeni”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Andrs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Andrs, O. (2018). Using Industry 4.0 Technologies for Teaching and Learning in Education Process. In: Březina, T., Jabłoński, R. (eds) Mechatronics 2017. MECHATRONICS 2017. Advances in Intelligent Systems and Computing, vol 644. Springer, Cham. https://doi.org/10.1007/978-3-319-65960-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65960-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65959-6

  • Online ISBN: 978-3-319-65960-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics