Skip to main content

General Introduction: What Is Progressive Multiple Sclerosis?

  • Chapter
  • First Online:
Progressive Multiple Sclerosis

Abstract

Over the past decade major advances in multiple sclerosis (MS) therapies have occurred, as well as significant increases in our understanding of disease aetiology: over a hundred susceptibility genes have been identified, complex immunological pathways have been mapped out and rapid changes in imaging techniques have vastly added to our understanding of temporal changes occurring in the course of the disease. Numerous large scale drug trials have been conducted and increasingly efficacious treatment options are emerging with effects on relapse frequency, allowing the clinician an array of therapeutic options. Indeed for patients with relapsing and remitting disease, therapies are offering the real prospect of significant disease modification with reduction in disease burden and disability [1]. Yet despite these advances, treatments for those with progressive MS remain limited and, once established, current drug therapies have little influence on the disease course of progressive MS. Patients with progressive disease are often frustrated by the lack of effective disease modifying therapies and often feel ‘left behind’ when compared to the range of treatments being offered to relapsing patients. This is an understandable frustration and one which is often difficult for patients to comprehend. Having said that, knowledge concerning the disease mechanisms is burgeoning and many research groups are starting to develop strategies to treat disease progression. As time goes on, a clearer understanding of exactly what needs to be treated is becoming apparent and improved trial protocols are being developed. At the heart of such strategies is an increasing knowledge of the pathophysiology of disease progression. The second edition of Progressive Multiple Sclerosis will review the current state of knowledge concerning disease progression and put it in the context of developing and future therapies for this particular phase of MS. To set the scene, in this chapter some general features of MS will be discussed and definitions and clinical characteristics of progressive MS will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lizak N, et al. Highly active immunomodulatory therapy ameliorates accumulation of disability in moderately advanced and advanced multiple sclerosis. J Neurol Neurosurg Psychiatry. 2017;88(3):196–203.

    Article  PubMed  Google Scholar 

  2. McDonald WI, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50(1):121–7.

    Article  CAS  PubMed  Google Scholar 

  3. Polman CH, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ramagopalan SV, et al. Multiple sclerosis: risk factors, prodromes, and potential causal pathways. Lancet Neurol. 2010;9(7):727–39.

    Article  PubMed  Google Scholar 

  5. Bronson PG, et al. CIITA variation in the presence of HLA-DRB1*1501 increases risk for multiple sclerosis. Hum Mol Genet. 2010;19(11):2331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lincoln MR, et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet. 2005;37(10):1108–12.

    Article  CAS  PubMed  Google Scholar 

  7. Sawcer S, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McAuley JL, et al. Comprehensive follow-up of the first genome-wide association study of multiple sclerosis identifies KIF21B and TMEM39A as susceptibility loci. Hum Mol Genet. 2010;19(5):953–62.

    Google Scholar 

  9. Kurtzke JF. Geographic distribution of multiple sclerosis: an update with special reference to Europe and the Mediterranean region. Acta Neurol Scand. 1980;62(2):65–80.

    Article  CAS  PubMed  Google Scholar 

  10. van der Mei IA, et al. Past exposure to sun, skin phenotype, and risk of multiple sclerosis: case-control study. BMJ. 2003;327(7410):316.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Munger KL, et al. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296(23):2832–8.

    Article  CAS  PubMed  Google Scholar 

  12. Mowry EM, et al. Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis. Ann Neurol. 2010;67(5):618–24.

    CAS  PubMed  Google Scholar 

  13. van der Mei IA, et al. Vitamin D levels in people with multiple sclerosis and community controls in Tasmania, Australia. J Neurol. 2007;254(5):581–90.

    Article  PubMed  CAS  Google Scholar 

  14. Simpson S Jr, et al. Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann Neurol. 2010;68(2):193–203.

    CAS  PubMed  Google Scholar 

  15. Lemire JM, et al. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J Nutr. 1995;125(6 Suppl):1704S–8S.

    CAS  PubMed  Google Scholar 

  16. Ramagopalan SV, et al. Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D. PLoS Genet. 2009;5(2):e1000369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006;81(3):353–73.

    Article  CAS  PubMed  Google Scholar 

  18. Sundstrom P, et al. An altered immune response to Epstein-Barr virus in multiple sclerosis: a prospective study. Neurology. 2004;62(12):2277–82.

    Article  CAS  PubMed  Google Scholar 

  19. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: The role of infection. Ann Neurol. 2007;61(4):288–99.

    Article  PubMed  Google Scholar 

  20. Salvetti M, Giovannoni G, Aloisi F. Epstein-Barr virus and multiple sclerosis. Curr Opin Neurol. 2009;22(3):201–6.

    Article  PubMed  Google Scholar 

  21. Niller HH, Wolf H, Minarovits J. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases. Autoimmunity. 2008;41(4):298–328.

    Article  CAS  PubMed  Google Scholar 

  22. Levin LI, et al. Temporal relationship between elevation of epstein-barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA. 2005;293(20):2496–500.

    Article  CAS  PubMed  Google Scholar 

  23. Ascherio A, Munger KL, Lunemann JD. The initiation and prevention of multiple sclerosis. Nat Rev Neurol. 2012;8(11):602–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sundqvist E, et al. Epstein-Barr virus and multiple sclerosis: interaction with HLA. Genes Immun. 2012;13(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  25. Serafini B, et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med. 2007;204(12):2899–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Willis SN, et al. Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain. 2009;132(Pt 12):3318–28.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hedstrom AK, et al. Smoking and two human leukocyte antigen genes interact to increase the risk for multiple sclerosis. Brain. 2011;134(Pt 3):653–64.

    Article  PubMed  Google Scholar 

  28. Munger KL, Chitnis T, Ascherio A. Body size and risk of MS in two cohorts of US women. Neurology. 2009;73(19):1543–50.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gianfrancesco MA, et al. Obesity during childhood and adolescence increases susceptibility to multiple sclerosis after accounting for established genetic and environmental risk factors. Obes Res Clin Pract. 2014;8(5):e435–47.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thompson AJ, et al. A clinical and laboratory study of benign multiple sclerosis. Q J Med. 1986;58(225):69–80.

    CAS  PubMed  Google Scholar 

  31. Hawkins SA, McDonnell GV. Benign multiple sclerosis? Clinical course, long term follow up, and assessment of prognostic factors. J Neurol Neurosurg Psychiatry. 1999;67(2):148–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Poser S, Wikstrom J, Bauer HJ. Clinical data and the identification of special forms of multiple sclerosis in 1271 cases studied with a standardized documentation system. J Neurol Sci. 1979;40(2–3):159–68.

    Article  CAS  PubMed  Google Scholar 

  33. Costelloe L, et al. Long-term clinical relevance of criteria for designating multiple sclerosis as benign after 10 years of disease. J Neurol Neurosurg Psychiatry. 2008;79(11):1245–8.

    Article  CAS  PubMed  Google Scholar 

  34. Correale J, Peirano I, Romano L. Benign multiple sclerosis: a new definition of this entity is needed. Mult Scler. 2011;18(2):210–8.

    Article  PubMed  Google Scholar 

  35. Skoog B, et al. A representative cohort of patients with non-progressive multiple sclerosis at the age of normal life expectancy. Brain. 2012;135(Pt 3):900–11.

    Article  PubMed  Google Scholar 

  36. Scalfari A, et al. The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain. 2010;133(Pt 7):1914–29.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology. 1996;46(4):907–11.

    Article  CAS  PubMed  Google Scholar 

  38. Lublin FD, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–86.

    Article  PubMed  PubMed Central  Google Scholar 

  39. McDonnell GV, Hawkins SA. Clinical study of primary progressive multiple sclerosis in Northern Ireland, UK. J Neurol Neurosurg Psychiatry. 1998;64(4):451–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Katz Sand I, et al. Diagnostic uncertainty during the transition to secondary progressive multiple sclerosis. Mult Scler. 2014;20(12):1654–7.

    Article  PubMed  Google Scholar 

  41. Mc AD, Compston N. Some aspects of the natural history of disseminated sclerosis. Q J Med. 1952;21(82):135–67.

    Google Scholar 

  42. Goodkin DE, et al. Low-dose oral methotrexate in chronic progressive multiple sclerosis: analyses of serial MRIs. Neurology. 1996;47(5):1153–7.

    Article  CAS  PubMed  Google Scholar 

  43. Hillert J, et al. An immunogenetic heterogeneity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1992;55(10):887–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weinshenker BG. Natural history of multiple sclerosis. Ann Neurol. 1994;36(Suppl):S6–11.

    Article  PubMed  Google Scholar 

  45. Filippi M, et al. Transitional progressive multiple sclerosis: MRI and MTI findings. Acta Neurol Scand. 1995;92(2):178–82.

    Article  CAS  PubMed  Google Scholar 

  46. Kremenchutzky M, et al. The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease. Brain. 2006;129(Pt 3):584–94.

    Article  CAS  PubMed  Google Scholar 

  47. Weinshenker BG. Progressive forms of MS: classification streamlined or consensus overturned? Lancet. 2000;355(9199):162–3.

    Article  CAS  PubMed  Google Scholar 

  48. Kremenchutzky M, et al. The natural history of multiple sclerosis: a geographically based study. 7. Progressive-relapsing and relapsing-progressive multiple sclerosis: a re-evaluation. Brain. 1999;122(Pt 10):1941–50.

    Article  PubMed  Google Scholar 

  49. Andersson PB, et al. Multiple sclerosis that is progressive from the time of onset: clinical characteristics and progression of disability. Arch Neurol. 1999;56(9):1138–42.

    Article  CAS  PubMed  Google Scholar 

  50. Westerlind H, et al. A significant decrease in diagnosis of primary progressive multiple sclerosis: a cohort study. Mult Scler. 2016;22(8):1071–9.

    Article  PubMed  Google Scholar 

  51. Cutter GR, Salter A, Marrie RA. Declines in the diagnosis of primary progressive MS: a critical change in phenotype or critical measurement error? Mult Scler. 2016;22(8):983–5.

    Article  PubMed  Google Scholar 

  52. Allison RS, Millar JH. Prevalence of disseminated sclerosis in Northern Ireland. Ulster Med J. 1954;23(Suppl. 2):1–27.

    CAS  PubMed  Google Scholar 

  53. Schumacker GA, et al. Problems of experimental trials of therapy in multiple sclerosis: report by the panel on the evaluation of experimental trials of therapy in multiple sclerosis. Ann N Y Acad Sci. 1965;122:552–68.

    Article  Google Scholar 

  54. McDonald WI, Halliday AM. Diagnosis and classification of multiple sclerosis. Br Med Bull. 1977;33(1):4–9.

    Article  CAS  PubMed  Google Scholar 

  55. Poser CM, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983;13(3):227–31.

    Article  CAS  PubMed  Google Scholar 

  56. McDonnell GV, Hawkins SA. Application of the Poser criteria in primary progressive multiple sclerosis. Ann Neurol. 1997;42(6):982–3.

    Article  CAS  PubMed  Google Scholar 

  57. Thompson AJ, et al. Diagnostic criteria for primary progressive multiple sclerosis: a position paper. Ann Neurol. 2000;47(6):831–5.

    Article  CAS  PubMed  Google Scholar 

  58. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–52.

    Article  CAS  PubMed  Google Scholar 

  59. Zeman AZ, et al. A study of oligoclonal band negative multiple sclerosis. J Neurol Neurosurg Psychiatry. 1996;60(1):27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Polman CH, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol. 2005;58(6):840–6.

    Article  PubMed  Google Scholar 

  61. Montalban X, et al. Primary progressive multiple sclerosis diagnostic criteria: a reappraisal. Mult Scler. 2009;15(12):1459–65.

    Article  CAS  PubMed  Google Scholar 

  62. Bonduelle M, Albaranes R. Statistical study of 145 cases of multiple sclerosis. Sem Hop. 1962;38:3762–73.

    CAS  PubMed  Google Scholar 

  63. Cottrell DA, et al. The natural history of multiple sclerosis: a geographically based study. 5. The clinical features and natural history of primary progressive multiple sclerosis. Brain. 1999;122(Pt 4):625–39.

    Article  PubMed  Google Scholar 

  64. Noseworthy J, et al. Multiple sclerosis after age 50. Neurology. 1983;33(12):1537–44.

    Article  CAS  PubMed  Google Scholar 

  65. Jeffery DR. Chronic progressive myelopathy: diagnostic analysis of cases with and without sensory involvement. J Neurol Sci. 1996;142(1–2):153–6.

    Article  CAS  PubMed  Google Scholar 

  66. Cazzullo CL, et al. Clinical picture of multiple sclerosis with late onset. Acta Neurol Scand. 1978;58(3):190–6.

    Article  CAS  PubMed  Google Scholar 

  67. Wingerchuk DM, et al. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6(9):805–15.

    Article  CAS  PubMed  Google Scholar 

  68. Wingerchuk DM, et al. Revised diagnostic criteria for neuromyelitis optica. Neurology. 2006;66(10):1485–9.

    Article  CAS  PubMed  Google Scholar 

  69. O'Brien TJ, Gates PG, Byrne E. Symptomatic female heterozygotes for adrenoleukodystrophy: a report of two unrelated cases and review of the literature. J Clin Neurosci. 1996;3(2):166–70.

    Article  PubMed  Google Scholar 

  70. Wilkins A, et al. Very long chain fatty acid levels in patients diagnosed with multiple sclerosis. Mult Scler. 2009;15(12):1525–7.

    Article  PubMed  Google Scholar 

  71. Yu-Wai-Man P, et al. Inherited mitochondrial optic neuropathies. J Med Genet. 2009;46(3):145–58.

    Article  CAS  PubMed  Google Scholar 

  72. Camp SJ, et al. Cognitive function in primary progressive and transitional progressive multiple sclerosis: a controlled study with MRI correlates. Brain. 1999;122(Pt 7):1341–8.

    Article  PubMed  Google Scholar 

  73. Camp SJ, et al. A longitudinal study of cognition in primary progressive multiple sclerosis. Brain. 2005;128(Pt 12):2891–8.

    Article  CAS  PubMed  Google Scholar 

  74. Denney DR, Sworowski LA, Lynch SG. Cognitive impairment in three subtypes of multiple sclerosis. Arch Clin Neuropsychol. 2005;20(8):967–81.

    Article  PubMed  Google Scholar 

  75. Denney DR, et al. Cognitive impairment in relapsing and primary progressive multiple sclerosis: mostly a matter of speed. J Int Neuropsychol Soc. 2004;10(7):948–56.

    Article  PubMed  Google Scholar 

  76. Wachowius U, et al. Cognitive impairment in primary and secondary progressive multiple sclerosis. J Clin Exp Neuropsychol. 2005;27(1):65–77.

    Article  PubMed  Google Scholar 

  77. Lorscheider J, et al. Defining secondary progressive multiple sclerosis. Brain. 2016;139(Pt 9):2395–405.

    Article  PubMed  Google Scholar 

  78. Weinshenker BG, et al. The natural history of multiple sclerosis: a geographically based study. 2. Predictive value of the early clinical course. Brain. 1989;112(Pt 6):1419–28.

    Article  PubMed  Google Scholar 

  79. Confavreux C, et al. Relapses and progression of disability in multiple sclerosis. N Engl J Med. 2000;343(20):1430–8.

    Article  CAS  PubMed  Google Scholar 

  80. Weinshenker BG, et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain. 1989;112(Pt 1):133–46.

    Article  PubMed  Google Scholar 

  81. University of California, San Francisco MS-EPIC Team, et al. Long-term evolution of multiple sclerosis disability in the treatment era. Ann Neurol. 2016;80(4):499–510.

    Article  Google Scholar 

  82. Confavreux C, et al. Clinical progression and decision making process in multiple sclerosis. Mult Scler. 1999;5(4):212–5.

    Article  CAS  PubMed  Google Scholar 

  83. Kurtzke JF. Clinical definition for multiple sclerosis treatment trials. Ann Neurol. 1994;36(Suppl):S73–9.

    Article  PubMed  Google Scholar 

  84. Fog T, Linnemann F. The course of multiple sclerosis in 73 cases with computer-designed curves. Acta Neurol Scand Suppl. 1970;47:3–175.

    CAS  PubMed  Google Scholar 

  85. Leray E, et al. Evidence for a two-stage disability progression in multiple sclerosis. Brain. 2010;133(Pt 7):1900–13.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Confavreux C, Vukusic S, Adeleine P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain. 2003;126(Pt 4):770–82.

    Article  PubMed  Google Scholar 

  87. Debouverie M, et al. Natural history of multiple sclerosis in a population-based cohort. Eur J Neurol. 2008;15(9):916–21.

    Article  CAS  PubMed  Google Scholar 

  88. Vukusic S, Confavreux C. Natural history of multiple sclerosis: risk factors and prognostic indicators. Curr Opin Neurol. 2007;20(3):269–74.

    Article  PubMed  Google Scholar 

  89. Confavreux C, Vukusic S. Natural history of multiple sclerosis: a unifying concept. Brain. 2006;129(Pt 3):606–16.

    Article  PubMed  Google Scholar 

  90. Confavreux C, Vukusic S. Age at disability milestones in multiple sclerosis. Brain. 2006;129(Pt 3):595–605.

    Article  PubMed  Google Scholar 

  91. Langdon DW. Cognition in multiple sclerosis. Curr Opin Neurol. 2011;24(3):244–9.

    Article  PubMed  Google Scholar 

  92. Calabrese M, et al. Cortical pathology and cognitive impairment in multiple sclerosis. Expert Rev Neurother. 2011;11(3):425–32.

    Article  PubMed  Google Scholar 

  93. Bergendal G, Fredrikson S, Almkvist O. Selective decline in information processing in subgroups of multiple sclerosis: an 8-year longitudinal study. Eur Neurol. 2007;57(4):193–202.

    Article  CAS  PubMed  Google Scholar 

  94. Strober L, et al. Sensitivity of conventional memory tests in multiple sclerosis: comparing the Rao Brief Repeatable Neuropsychological Battery and the Minimal Assessment of Cognitive Function in MS. Mult Scler. 2009;15(9):1077–84.

    Article  CAS  PubMed  Google Scholar 

  95. Laatu S, et al. Sematic memory deficit in multiple sclerosis; impaired understanding of conceptual meanings. J Neurol Sci. 1999;162(2):152–61.

    Article  CAS  PubMed  Google Scholar 

  96. Drew M, et al. Executive dysfunction and cognitive impairment in a large community-based sample with Multiple Sclerosis from New Zealand: a descriptive study. Arch Clin Neuropsychol. 2008;23(1):1–19.

    Article  PubMed  Google Scholar 

  97. Langdon DW, Thompson AJ. Multiple sclerosis: a preliminary study of selected variables affecting rehabilitation outcome. Mult Scler. 1999;5(2):94–100.

    Article  CAS  PubMed  Google Scholar 

  98. Rao SM, et al. Cognitive dysfunction in multiple sclerosis. II. Impact on employment and social functioning. Neurology. 1991;41(5):692–6.

    Article  CAS  PubMed  Google Scholar 

  99. Feinstein A. Mood disorders in multiple sclerosis and the effects on cognition. J Neurol Sci. 2006;245(1–2):63–6.

    Article  PubMed  Google Scholar 

  100. Chwastiak L, et al. Depressive symptoms and severity of illness in multiple sclerosis: epidemiologic study of a large community sample. Am J Psychiatry. 2002;159(11):1862–8.

    Article  PubMed  Google Scholar 

  101. Harel Y, Barak Y, Achiron A. Dysregulation of affect in multiple sclerosis: new phenomenological approach. Psychiatry Clin Neurosci. 2007;61(1):94–8.

    Article  PubMed  Google Scholar 

  102. Parmenter BA, Denney DR, Lynch SG. The cognitive performance of patients with multiple sclerosis during periods of high and low fatigue. Mult Scler. 2003;9(2):111–8.

    Article  PubMed  Google Scholar 

  103. Benedict RH, et al. Minimal neuropsychological assessment of MS patients: a consensus approach. Clin Neuropsychol. 2002;16(3):381–97.

    Article  PubMed  Google Scholar 

  104. Benedict RH, et al. Validity of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). J Int Neuropsychol Soc. 2006;12(4):549–58.

    Article  PubMed  Google Scholar 

  105. Kurtzke JF, et al. Studies on the natural history of multiple sclerosis. V. Long-term survival in young men. Arch Neurol. 1970;22(3):215–25.

    Article  CAS  PubMed  Google Scholar 

  106. Swingler RJ, Compston DA. The morbidity of multiple sclerosis. Q J Med. 1992;83(300):‑325–37.

    CAS  PubMed  Google Scholar 

  107. Alusi SH, et al. A study of tremor in multiple sclerosis. Brain. 2001;124(Pt 4):720–30.

    Article  CAS  PubMed  Google Scholar 

  108. Pittock SJ, et al. Prevalence of tremor in multiple sclerosis and associated disability in the Olmsted County population. Mov Disord. 2004;19(12):1482–5.

    Article  PubMed  Google Scholar 

  109. Koch M, et al. Tremor in multiple sclerosis. J Neurol. 2007;254(2):133–45.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Weier K, et al. Contribution of the cerebellum to cognitive performance in children and adolescents with multiple sclerosis. Mult Scler. 2016;22(5):599–607.

    Article  PubMed  Google Scholar 

  111. Tedesco AM, et al. The cerebellar cognitive profile. Brain. 2011;134(Pt 12):3672–86.

    Article  PubMed  Google Scholar 

  112. Weier K, et al. Cerebellar abnormalities contribute to disability including cognitive impairment in multiple sclerosis. PLoS One. 2014;9(1):e86916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Kutzelnigg A, et al. Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol. 2007;17(1):38–44.

    Article  PubMed  Google Scholar 

  114. Craner MJ, et al. Annexin II/p11 is up-regulated in Purkinje cells in EAE and MS. Neuroreport. 2003;14(4):555–8.

    Article  PubMed  Google Scholar 

  115. Calabrese M, et al. Magnetic resonance evidence of cerebellar cortical pathology in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2010;81(4):401–4.

    Article  PubMed  Google Scholar 

  116. Anderson VM, et al. MRI measures show significant cerebellar gray matter volume loss in multiple sclerosis and are associated with cerebellar dysfunction. Mult Scler. 2009;15(7):811–7.

    Article  CAS  PubMed  Google Scholar 

  117. Davie CA, et al. Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain. 1995;118(Pt 6):1583–92.

    Article  PubMed  Google Scholar 

  118. Waxman SG. Cerebellar dysfunction in multiple sclerosis: evidence for an acquired channelopathy. Prog Brain Res. 2005;148:353–65.

    Article  PubMed  Google Scholar 

  119. Waxman SG. Acquired channelopathies in nerve injury and MS. Neurology. 2001;56(12):1621–7.

    Article  CAS  PubMed  Google Scholar 

  120. Kurtzke JF. Natural history and clinical outcome measures for multiple sclerosis studies. Why at the present time does EDSS scale remain a preferred outcome measure to evaluate disease evolution? Neurol Sci. 2000;21(6):339–41.

    Article  CAS  PubMed  Google Scholar 

  121. Willoughby EW, Paty DW. Scales for rating impairment in multiple sclerosis: a critique. Neurology. 1988;38(11):1793–8.

    Article  CAS  PubMed  Google Scholar 

  122. Amato MP, et al. Interrater reliability in assessing functional systems and disability on the Kurtzke scale in multiple sclerosis. Arch Neurol. 1988;45(7):746–8.

    Article  CAS  PubMed  Google Scholar 

  123. Francis DA, et al. An assessment of disability rating scales used in multiple sclerosis. Arch Neurol. 1991;48(3):299–301.

    Article  CAS  PubMed  Google Scholar 

  124. Goodkin DE, et al. Inter- and intrarater scoring agreement using grades 1.0 to 3.5 of the Kurtzke Expanded Disability Status Scale (EDSS). Multiple Sclerosis Collaborative Research Group. Neurology. 1992;42(4):859–63.

    Article  CAS  PubMed  Google Scholar 

  125. Hobart JC, et al. Rating scales as outcome measures for clinical trials in neurology: problems, solutions, and recommendations. Lancet Neurol. 2007;6(12):1094–105.

    Article  PubMed  Google Scholar 

  126. Cohen JA, et al. Benefit of interferon beta-1a on MSFC progression in secondary progressive MS. Neurology. 2002;59(5):679–87.

    Article  CAS  PubMed  Google Scholar 

  127. Fischer JS, et al. The Multiple Sclerosis Functional Composite Measure (MSFC): an integrated approach to MS clinical outcome assessment. National MS Society Clinical Outcomes Assessment Task Force. Mult Scler. 1999;5(4):244–50.

    Article  CAS  PubMed  Google Scholar 

  128. Cutter GR, et al. Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain. 1999;122(Pt 5):871–82.

    Article  PubMed  Google Scholar 

  129. Cohen JA, et al. Use of the multiple sclerosis functional composite as an outcome measure in a phase 3 clinical trial. Arch Neurol. 2001;58(6):961–7.

    Article  CAS  PubMed  Google Scholar 

  130. Miller DM, et al. Clinical significance of the multiple sclerosis functional composite: relationship to patient-reported quality of life. Arch Neurol. 2000;57(9):1319–24.

    CAS  PubMed  Google Scholar 

  131. Kalkers NF, et al. MS functional composite: relation to disease phenotype and disability strata. Neurology. 2000;54(6):1233–9.

    Article  CAS  PubMed  Google Scholar 

  132. Goldman MD, Motl RW, Rudick RA. Possible clinical outcome measures for clinical trials in patients with multiple sclerosis. Ther Adv Neurol Disord. 2010;3(4):229–39.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kragt JJ, et al. Responsiveness and predictive value of EDSS and MSFC in primary progressive MS. Neurology. 2008;70(13 Pt 2):1084–91.

    Article  CAS  PubMed  Google Scholar 

  134. Kappos L, et al. Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet. 2007;370(9585):389–97.

    Article  CAS  PubMed  Google Scholar 

  135. Montalban X. Overview of European pilot study of interferon beta-Ib in primary progressive multiple sclerosis. Mult Scler. 2004;10(Suppl 1):S62. discussion 62-4

    PubMed  Google Scholar 

  136. Wolinsky JS, et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann Neurol. 2007;61(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  137. Polman CH, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):899–910.

    Article  CAS  PubMed  Google Scholar 

  138. Kappos L, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387–401.

    Article  CAS  PubMed  Google Scholar 

  139. Goodman AD, et al. Fampridine-SR in multiple sclerosis: a randomized, double-blind, placebo-controlled, dose-ranging study. Mult Scler. 2007;13(3):357–68.

    Article  CAS  PubMed  Google Scholar 

  140. Hobart J, et al. The Multiple Sclerosis Impact Scale (MSIS-29): a new patient-based outcome measure. Brain. 2001;124(Pt 5):962–73.

    Article  CAS  PubMed  Google Scholar 

  141. Roxburgh RH, et al. Multiple Sclerosis Severity Score: using disability and disease duration to rate disease severity. Neurology. 2005;64(7):1144–51.

    Article  CAS  PubMed  Google Scholar 

  142. Briggs FB, et al. Genome-wide association study of severity in multiple sclerosis. Genes Immun. 2011;12(8):615–25.

    Article  CAS  Google Scholar 

  143. Kister I, et al. Rapid disease course in African Americans with multiple sclerosis. Neurology. 2010;75(3):217–23.

    Article  CAS  PubMed  Google Scholar 

  144. The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology. 1993;43(4):655–61.

    Article  Google Scholar 

  145. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. Lancet. 1998;352(9139):1498–504.

    Article  Google Scholar 

  146. Johnson KP, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology. 1995;45(7):1268–76.

    Article  CAS  PubMed  Google Scholar 

  147. Jacobs LD, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol. 1996;39(3):285–94.

    Article  CAS  PubMed  Google Scholar 

  148. Coles AJ, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359(17):1786–801.

    Article  PubMed  Google Scholar 

  149. Montalban X, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209–20.

    Article  CAS  PubMed  Google Scholar 

  150. Hauser SL, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–34.

    Article  CAS  PubMed  Google Scholar 

  151. Cohen JA, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):402–15.

    Article  CAS  PubMed  Google Scholar 

  152. Gold R, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367(12):1098–107.

    Article  CAS  PubMed  Google Scholar 

  153. O'Connor P, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011;365(14):1293–303.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair Wilkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilkins, A., Hawkins, S. (2018). General Introduction: What Is Progressive Multiple Sclerosis?. In: Wilkins, A. (eds) Progressive Multiple Sclerosis. Springer, Cham. https://doi.org/10.1007/978-3-319-65921-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65921-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65920-6

  • Online ISBN: 978-3-319-65921-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics