Skip to main content

Pivoting Rules

  • Chapter
  • First Online:
Linear Programming Using MATLAB®

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 127))

  • 4082 Accesses

Abstract

Simplex-type algorithms perform successive pivoting operations (or iterations) in order to reach the optimal solution. The choice of the pivot element at each iteration is one of the most critical steps in simplex-type algorithms. The flexibility of the entering and leaving variable selection allows to develop various pivoting rules. This chapter presents six pivoting rules used in each iteration of the simplex algorithm to determine the entering variable: (i) Bland’s rule, (ii) Dantzig’s rule, (iii) Greatest Increment Method, (iv) Least Recently Considered Method, (v) Partial Pricing rule, and (vi) Steepest Edge rule. Each technique is presented with: (i) its mathematical formulation, (ii) a thorough numerical example, and (iii) its implementation in MATLAB. Finally, a computational study is performed. The aim of the computational study is twofold: (i) compare the execution time of the presented pivoting rules, and (ii) highlight the impact of the choice of the pivoting rule in the number of iterations and the execution time of the revised simplex algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D. (1990). Linear programming and network flows. New York: John Wiley & Sons, Inc.

    Book  Google Scholar 

  2. Benichou, M., Gautier, J., Hentges, G., & Ribiere, G. (1977). The efficient solution of large–scale linear programming problems. Mathematical Programming, 13, 280–322.

    Article  MathSciNet  Google Scholar 

  3. Bland, R. G. (1977). New finite pivoting rules for the simplex method. Mathematics of Operations Research, 2(2), 103–107.

    Article  MathSciNet  Google Scholar 

  4. Clausen, J. (1987). A note on Edmonds-Fukuda’s pivoting rule for the simplex method. European Journal of Operations Research, 29, 378–383.

    Article  Google Scholar 

  5. Dantzig, G. B. (1963). Linear programming and extensions. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  6. Forrest, J. J., & Goldfarb, D. (1992). Steepest-edge simplex algorithms for linear programming. Mathematical Programming, 57(1–3), 341–374.

    Article  MathSciNet  Google Scholar 

  7. Fukuda, K. (1982). Oriented matroid programming. Ph.D. Thesis, Waterloo University, Waterloo, Ontario, Canada.

    Google Scholar 

  8. Fukuda, K., & Terlaky, T. (1999). On the existence of a short admissible pivot sequence for feasibility and linear optimization problems. Pure Mathematics and Applications, 10(4), 431–447

    MathSciNet  MATH  Google Scholar 

  9. Gärtner, B. (1995). Randomized optimization by simplex-type methods. Ph.D. thesis, Freien Universität, Berlin.

    Google Scholar 

  10. Goldfarb, D., & Reid, J. K. (1977). A practicable steepest–edge simplex algorithm. Mathematical Programming, 12(3), 361–371.

    Article  MathSciNet  Google Scholar 

  11. Harris, P. M. J. (1973). Pivot selection methods for the Devex LP code. Mathematical Programming, 5, 1–28.

    Article  MathSciNet  Google Scholar 

  12. Klee, V., & Minty, G. J. (1972). How good is the simplex algorithm. In O. Shisha (ed.) Inequalities – III. New York and London: Academic Press Inc.

    Google Scholar 

  13. Maros, I., & Khaliq, M. H. (1999). Advances in design and implementation of optimization software. European Journal of Operational Research, 140(2), 322–337.

    Article  MathSciNet  Google Scholar 

  14. Murty, K. G. (1974). A note on a Bard type scheme for solving the complementarity problem. Opsearch, 11, 123–130.

    MathSciNet  Google Scholar 

  15. Papadimitriou, C. H., & Steiglitz, K. (1982). Combinatorial optimization: algorithms and complexity. Englewood Cliffs, NJ: Prentice-Hall, Inc.

    MATH  Google Scholar 

  16. Ploskas, N. (2014). Hybrid optimization algorithms: implementation on GPU. Ph.D. thesis, Department of Applied Informatics, University of Macedonia.

    Google Scholar 

  17. Ploskas, N., & Samaras, N. (2014). Pivoting rules for the revised simplex algorithm. Yugoslav Journal of Operations Research, 24(3), 321–332.

    Article  MathSciNet  Google Scholar 

  18. Ploskas, N., & Samaras, N. (2014). GPU accelerated pivoting rules for the simplex algorithm. Journal of Systems and Software, 96, 1–9.

    Article  Google Scholar 

  19. Świetanowski, A. (1998). A new steepest edge approximation for the simplex method for linear programming. Computational Optimization and and Applications, 10(3), 271–281.

    Article  MathSciNet  Google Scholar 

  20. Terlaky, T., & Zhang, S. (1993). Pivot rules for linear programming: a survey on recent theoretical developments. Annals of Operations Research, 46(1), 203–233.

    Article  MathSciNet  Google Scholar 

  21. Thomadakis, M. E. (1994). Implementation and evaluation of primal and dual simplex methods with different pivot-selection techniques in the LPBench environment. A research report. Texas A&M University, Department of Computer Science.

    Google Scholar 

  22. Van Vuuren, J. H., & Grundlingh, W. R. (2001). An active decision support system for optimality in open air reservoir release strategies. International Transactions in Operational Research, 8(4), 439–464.

    Article  Google Scholar 

  23. Wang, Z. (1989). A modified version of the Edmonds-Fukuda algorithm for LP problems in the general form. Asia-Pacific Journal of Operational Research, 8(1), 55–61.

    MathSciNet  MATH  Google Scholar 

  24. Zadeh, N. (1980). What is the worst case behavior of the simplex algorithm. Technical report, Department of Operations Research, Stanford University.

    MATH  Google Scholar 

  25. Zhang, S. (1991). On anti-cycling pivoting rules for the simplex method. Operations Research Letters, 10, 189–192.

    Article  MathSciNet  Google Scholar 

  26. Ziegler, G. M. (1990). Linear programming in oriented matroids. Technical Report No. 195, Institut für Mathematik, Universität Augsburg, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

6.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

chapter 6 (Zip 6 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ploskas, N., Samaras, N. (2017). Pivoting Rules. In: Linear Programming Using MATLAB® . Springer Optimization and Its Applications, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-319-65919-0_6

Download citation

Publish with us

Policies and ethics