Skip to main content

The Nature of Electron Transport and Visible Light Absorption in Strontium Niobate—A Plasmonic Water Splitter

  • Chapter
  • First Online:
  • 613 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Semiconductor compounds are widely used for water splitting applications, where photo-generated electron-hole pairs are exploited to induce catalysis. Recently, powders of a metallic oxide (Sr1−xNbO3, 0.03 < x < 0.20) have shown competitive photocatalytic efficiency, opening the material space available for finding optimizing performance in water-splitting applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. X. Xu, C. Randorn, P. Efstathiou, J.T.S. Irvine, A red metallic oxide photocatalyst. Nat. Mater. 11, 595–598 (2012)

    Article  ADS  Google Scholar 

  2. D.Y. Wan et al., Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate. Nat. Commun. 8, 15070 (2017)

    Article  ADS  Google Scholar 

  3. R.M. Navarro, M.C. Alvarez-Galvan, J.A.V. de la Mano, S.M. Al-Zahrani, J.L.G. Fierro, A framework for visible-light water splitting. Energy Environ. Sci. 3, 1865–1882 (2010)

    Article  Google Scholar 

  4. J. Augustynski, B.D. Alexander, R. Solarska, Metal oxide photoanodes for water splitting. Top. Curr. Chem. 303, 1–38 (2011)

    Article  Google Scholar 

  5. M.T. Mayer, Y. Lin, G. Yuan, D. Wang, Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc. Chem. Res. 46, 1558–1566 (2013)

    Article  Google Scholar 

  6. F.F. Abdi et al., Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2159 (2013)

    Google Scholar 

  7. J. Brillet et al., Highly efficient water splitting by a dual-absorber tandem cell. Nat. Photonics 6, 823–827 (2012)

    Article  ADS  Google Scholar 

  8. Y.W. Chen et al., Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10, 539–544 (2011)

    Article  ADS  Google Scholar 

  9. Z.S. Li, W.J. Luo, M.L. Zhang, J.Y. Feng, Z.G. Zou, Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 6, 347–370 (2013)

    Article  Google Scholar 

  10. D.V. Esposito, I. Levin, T.P. Moffat, A.A. Talin, H-2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nat. Mater. 12, 562–568 (2013)

    Article  ADS  Google Scholar 

  11. F.D. Lin, S.W. Boettcher, Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat. Mater. 13, 81–86 (2014)

    Article  ADS  Google Scholar 

  12. S.Y. Reece et al., Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011)

    Article  ADS  Google Scholar 

  13. J.Y. Kim et al., Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 3, 2681 (2013)

    Google Scholar 

  14. H.S. Park, H.C. Lee, K.C. Leonard, G.J. Liu, A.J. Bard, Unbiased photoelectrochemical water splitting in Z-scheme device using W/Mo-doped BiVO4 and ZnxCd1-xSe. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry 14, 2277–2287 (2013)

    Article  Google Scholar 

  15. F.E. Osterloh, B.A. Parkinson, Recent developments in solar water-splitting photocatalysis. MRS Bull. 36, 17–22 (2011)

    Article  Google Scholar 

  16. A. Tanaka, S. Sakaguchi, K. Hashimoto, H. Kominami, Preparation of Au/TiO2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light. ACS Catal. 3, 79–85 (2013)

    Article  Google Scholar 

  17. Y.C. Pu et al., Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13, 3817–3823 (2013)

    Article  ADS  Google Scholar 

  18. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)

    Article  Google Scholar 

  19. S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243–2245 (2002)

    Article  ADS  Google Scholar 

  20. G. Liu et al., A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ. Sci. 5, 9603–9610 (2012)

    Article  Google Scholar 

  21. X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)

    Article  ADS  Google Scholar 

  22. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  Google Scholar 

  23. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids 63, 1909–1920 (2002)

    Article  ADS  Google Scholar 

  24. J. Wang et al., Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 131, 12290–12297 (2009)

    Article  Google Scholar 

  25. A. Takai, P.V. Kamat, Capture, store, and discharge. Shuttling photogenerated electrons across TiO2–silver interface. ACS Nano 5, 7369–7376 (2011)

    Article  Google Scholar 

  26. S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011)

    Article  ADS  Google Scholar 

  27. X. Xu, C. Randorn, P. Efstathiou, J.T. Irvine, A red metallic oxide photocatalyst. Nat. Mater. 11, 595–598 (2012)

    Article  ADS  Google Scholar 

  28. P. Efstathiou, X. Xu, H. Menard, J.T. Irvine, An investigation of crystal structure, surface area and surface chemistry of strontium niobate and their influence on photocatalytic performance. Dalton Trans. 42, 7880–7887 (2013)

    Article  Google Scholar 

  29. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007)

    Google Scholar 

  30. B. Johs, C.M. Herzinger, J.H. Dinan, A. Cornfeld, J.D. Benson, Development of a parametric optical constant model for Hg1−xCdxTe for control of composition by spectroscopic ellipsometry during MBE growth. Thin Solid Films 313–314, 137–142 (1998)

    Article  Google Scholar 

  31. J.S. Toll, Causality and the dispersion relation: logical foundations. Phys. Rev. 104, 1760–1770 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  32. O.S. Heavens, Optical Properties of Thin Solid Films (Academic Press, 1955)

    Google Scholar 

  33. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1997)

    Google Scholar 

  34. P. Kubelka, F. Munk, An article on optics of paint layers. Z. Tech. Phys. 12, 593–601 (1931)

    Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  36. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  37. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  38. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  39. S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, A. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study. Phys. Rev. B 57, 1505 (1998)

    Article  ADS  Google Scholar 

  40. B. Hessen, S.A. Sunshine, T. Siegrist, R. Jimenez, Crystallization of reduced strontium and barium niobate perovskites from borate fluxes. Mater. Res. Bull. 26, 85–90 (1991)

    Article  Google Scholar 

  41. N.H. Peng, J.T.S. Irvine, A.G. Fitzgerald, Synthesis and crystal structure of the distorted perovskite Sr0.97NbO3 determined by high resolution powder neutron diffraction. J. Mater. Chem. 8, 1033–1038 (1998)

    Article  Google Scholar 

  42. D. Ridgley, R. Ward, The preparation of a strontium-niobium bronze with the perovskite structure. J. Am. Chem. Soc. 77, 6132–6136 (1955)

    Article  Google Scholar 

  43. H.J. Kim et al., High mobility in a stable transparent perovskite oxide. Appl. Phys. Express 5, 061102 (2012)

    Google Scholar 

  44. A.K. Chandiran, M. Abdi-Jalebi, M.K. Nazeeruddin, M. Grätzel, Analysis of Electron Transfer Properties of ZnO and TiO2 Photoanodes for Dye-Sensitized Solar Cells. ACS Nano 8, 2261–2268 (2014)

    Article  Google Scholar 

  45. B.S. Jeong, D.P. Norton, J.D. Budai, Conductivity in transparent anatase TiO2 films epitaxially grown by reactive sputtering deposition. Solid-State Electron. 47, 2275–2278 (2003)

    Article  ADS  Google Scholar 

  46. S.S. Li, W.R. Thurber, The dopant density and temperature dependence of electron mobility and resistivity in n-type silicon. Solid-State Electron. 20, 609–616 (1977)

    Article  ADS  Google Scholar 

  47. M.S. Hammer, D. Rauh, V. Lorrmann, C. Deibel, V. Dyakonov, Effect of doping- and field-induced charge carrier density on the electron transport in nanocrystalline ZnO. Nanotechnology 19 (48) 485701 (2008)

    Google Scholar 

  48. K. Isawa, J. Sugiyama, K. Matsuura, A. Nozaki, H. Yamauchi, Synthesis and transport properties of Sr x NbO3 (0.75 ≤ x ≤ 0.90). Phys. Rev. B 47, 2849–2853 (1993)

    Google Scholar 

  49. A. Avella, F. Mancini, Strongly Correlated Systems: Experimental Techniques. Springer Series in Solid-State Sciences (Springer, Berlin, 2015)

    Google Scholar 

  50. B.A. Ruzicka, R. Wang, J. Lohrman, S. Ren, H. Zhao, Exciton diffusion in semiconducting single-walled carbon nanotubes studied by transient absorption microscopy. Phys. Rev. B 86 (2012)

    Google Scholar 

  51. M.B. Price et al., Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites. Nat. Commun. 6, 8420 (2015)

    Article  Google Scholar 

  52. T.S. Ahmadi, S.L. Logunov, M.A. El-Sayed, Picosecond dynamics of colloidal gold nanoparticles. J. Phys. Chem. 100, 8053–8056 (1996)

    Article  Google Scholar 

  53. R.H. Doremus, Optical properties of small gold particles. J. Chem. Phys. 40, 2389 (1964)

    Article  ADS  Google Scholar 

  54. E.J. Heilweil, R.M. Hochstrasser, Nonlinear spectroscopy and picosecond transient grating study of colloidal gold. J. Chem. Phys. 82, 4762 (1985)

    Article  ADS  Google Scholar 

  55. C.K. Sun, F. Vallée, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B 50, 15337–15348 (1994)

    Article  ADS  Google Scholar 

  56. M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015)

    Article  ADS  Google Scholar 

  57. A. Manjavacas, J.G. Liu, V. Kulkarni, P. Nordlander, Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014)

    Article  Google Scholar 

  58. M. Lisowski et al., Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001). Appl. Phys. A Mater. Sci. Process. 78, 165–176 (2004)

    Article  ADS  Google Scholar 

  59. H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao, Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B 57, 11334–11340 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyang Wan .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wan, D. (2017). The Nature of Electron Transport and Visible Light Absorption in Strontium Niobate—A Plasmonic Water Splitter. In: Crystal Structure,Electronic and Optical Properties of Epitaxial Alkaline Earth Niobate Thin Films. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-65912-1_3

Download citation

Publish with us

Policies and ethics