Skip to main content

Invasion of an Avian Nest Parasite, Philornis downsi, to the Galapagos Islands: Colonization History, Adaptations to Novel Ecosystems, and Conservation Challenges

  • Chapter
  • First Online:

Abstract

This chapter discusses the invasion of an avian nest fly, Philornis downsi, to the Galapagos Islands, its interactions with novel bird hosts, and the strategies that are being implemented to protect threatened, endemic bird species. Philornis downsi was first recorded in the Galapagos less than 60 years ago and is the first bird parasite with parasitic larval stages and non-parasitic adults to reach the islands. Since its introduction, it has successfully spread to most islands and habitats in the archipelago and is associated with a wide range of bird hosts. The consequences of its feeding habits on naive birds have been deleterious to a large number of species, many of which are in decline. An international research group, coordinated by the Charles Darwin Foundation and Galapagos National Park Directorate, is studying various aspects of the biology of P. downsi and its impacts on selected bird species with the aim of fully understanding the complex interactions between flies and birds. The ultimate aim of these investigations is the development of effective management tools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alphey L (2014) Genetic control of mosquitoes. Annu Rev Entomol 59:205–224. https://doi.org/10.1146/annurev-ento-011613-162002

    Article  CAS  PubMed  Google Scholar 

  • Antoniazzi LR, Manzoli D, Rohrmann D, Saravia M, Silvestri L, Beldomenico P (2011) Climate variability affects the impact of parasitic flies on Argentinean forest birds. J Zool 183:126–134

    Article  Google Scholar 

  • Arendt WJ (1985) Philornis ectoparasitism of pearly-eyed trashers. II. Effects on adults and reproduction. Auk 102:281–292

    Article  Google Scholar 

  • Arendt WJ (2000) Impact of nest predators, competitors, and ectoparasites on pearly-eyed trashers, with comments on the potential implications for Puerto Rican parrot recovery. Ornit Neotrop 11:13–63

    Google Scholar 

  • Beebe W (1924) Galapagos: world’s end. Putnam, New York

    Google Scholar 

  • Bennett G, Whitworth T (1991) Studies of the life history of some species of Protocalliphora (Diptera: Calliphoridae). Can J Zool 69:2048–2058

    Article  Google Scholar 

  • Blackburn TM, Ewen JG (2016) Parasites as drivers and passengers of human-mediated biological invasions. Ecohealth 14(Supplement 1):61–73. https://doi.org/10.1007/s10393-015-1092-6

    PubMed  PubMed Central  Google Scholar 

  • Boag PT, Grant PR (1984) The classical case of character release: Darwin’s finches (Geospiza) on Isla Daphne Major, Galapagos. Biol J Linn Soc 22:243–287

    Google Scholar 

  • Brockerhoff EB, Suckling DM, Kimberley M, Richardson B, Coker G, Gous S, Kerr JL, Cowan DM, Lance DR, Strand T, Zhang A (2012) Aerial application of pheromones for mating disruption of an invasive moth as a potential eradication tool. PLoS One 7(8):e43767. https://doi.org/10.1371/journal.pone.0043767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buechler K, Fitze PS, Gottstein B, Jacot A, Richner H (2002) Parasite-induced maternal response in a natural bird population. J Anim Ecol 71:247–252

    Article  Google Scholar 

  • Bulgarella M, Heimpel GE (2015) Host range and community structure of avian nest parasites in the genus Philornis (Diptera: Muscidae) on the island of Trinidad. Ecol Evol 5:3695–3705. https://doi.org/10.1002/ece3.1621

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulgarella M, Quiroga MA, Brito Vera GA, Dregni JS, Cunninghame F, Mosquera Munoz DA, Moje LD, Causton CE, Heimpel GE (2015) Philornis downsi (Diptera: Muscidae), an avian nest parasite invasive to the Galapagos islands, in mainland Ecuador. Ann Entomol Soc Am 108:242–250. https://doi.org/10.1093/aesa/sav026

    Article  Google Scholar 

  • Bulgarella M, Quiroga MA, Boulton RA, Ramírez IE, Moon RD, Causton CE, Heimpel GE (2017) Life cycle and host specificity of the parasitoid Conura annulifera (Hymenoptera: Chalcididae), a potential biological control agent of Philornis downsi (Diptera: Muscidae) in the Galapagos Islands. Ann Entomol Soc Am 110:317–328. https://doi.org/10.1093/aesa/saw102

    Article  Google Scholar 

  • Bulgarella M, Palma RL (2017) Coextinction dilemma in the Galapagos Islands: can Darwin’s finches and their native ectoparasites survive the control of the introduced fly Philornis downsi? Insect Consev Divers 10:193–199

    Google Scholar 

  • Burks BD (1960) A Spilochalcis parasitic on flies that infest bird nests (Hymenoptera, Chalcididae). Acta Hymenopterologica 1:95–97

    Google Scholar 

  • Calderon Alvarez C, Causton CE, Hoddle MS, Hoddle CD, van Driesche RG, Stanek EJ III (2012) Monitoring the effects of Rodolia cardinalis on Icerya purchasi populations on the Galapagos Islands. BioControl 57:167–179

    Article  Google Scholar 

  • Carpenter CC (1966) The marine iguana of the Galapagos, its behavior and ecology. Proc Calif Acad Sci 34:329–376

    Google Scholar 

  • Causton C, Cunninghame F, Tapia W (2013) Management of the avian parasite Philornis downsi in the Galapagos Islands: a collaborative and strategic action plan. In: Galapagos report 2011–2012. Puerto Ayora, Galapagos, Ecuador, p 167–173

    Google Scholar 

  • Causton CE (2009) Success in biological control: the scale and the ladybird. In: De Roy R (ed) Galapagos: preserving Darwin’s legacy. David Bateman, Auckland, New Zealand, pp 184–190

    Google Scholar 

  • Causton CE (2007) Risks associated with current and proposed air routes to the Galapagos Islands. In: GNPS, CDF, INGALA (ed) Galapagos report 2006–2007. Puerto Ayora, Galapagos, Ecuador, pp 55–59

    Google Scholar 

  • Causton CE, Campbell M, Hewitt C, Boada R (2008) Risks associated with maritime routes to and within Galapagos. In: GNPS, CDF, INGALA (ed) Galapagos report 2007–2008. Puerto Ayora, Galapagos, Ecuador, pp 142–145

    Google Scholar 

  • Causton CE, Lincango MP, Poulsom T (2004) Feeding range studies of Rodolia cardinalis (Mulsant), a candidate biological control agent of Icerya purchasi Maskell in the Galapagos islands. Biol Control 29:315–325

    Article  Google Scholar 

  • Causton CE, Lincango P (2014) Review of chemical control methods for use against Philornis downsi in nests of threatened Galapagos birds, with an in-depth nontarget risk assessment of permethrin. Fundación Charles Darwin, Puerto Ayora, Galapagos, Ecuador

    Google Scholar 

  • Causton CE, Peck SB, Sinclair BJ, Roque-Albedo L, Hodgson CJ, Landry B (2006) Alien insects: threats and implications for the conservation of the Galapagos Islands. Ann Entomol Soc Am 99:121–143

    Article  Google Scholar 

  • Cha DH, Mieles AE, Lahuatte P, Cahuana A, Lincango MP, Causton CE, Tebbich S, Cimadom A, Teale SA (2016) Identification and optimization of microbial attractants for Philornis downsi, an invasive fly parasitic on birds. J Chem Ecol 42:1101–1111

    Article  CAS  PubMed  Google Scholar 

  • Christe P, Richner H, Oppliger A (1996b) Begging, food provisioning, and nestling competition in great tit broods infested with ectoparasites. Behav Ecol 7:127–131

    Article  Google Scholar 

  • Christe P, Richner H, Oppliger A (1996a) Of great tits and fleas: sleep baby sleep. Anim Behav 52:1087–1092

    Article  Google Scholar 

  • Cimadom A, Causton CE, Cha DH, Damiens D, Fessl B, Hood-Nowotny R, Lincango MP, Mieles AE, Nemeth E, Semler EM, Teale SA, Tebbich S (2016) Darwin’s finches treat their feathers with a natural repellent. Sci Rep 6:34559. https://doi.org/10.1038/srep34559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cimadom A, Ulloa A, Meidl P, Zöttl M, Zöttl E, Fessl B, Nemeth E, Dvorak M, Cunninghame F, Tebbich S (2014) Invasive parasites, habitat change and heavy rainfall reduce breeding success in Darwin’s finches. PLoS One 9:e107518. https://doi.org/10.1371/journal.pone.0107518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark L, Mason JR (1988) Effect of biologically-active plants used as nest material and the derived benefit to starling nestlings. Oecologia 77:174–180. https://doi.org/10.1007/BF00379183

    Article  PubMed  Google Scholar 

  • Cock MJW, Murphy ST, Kaira MTK, Thompson E, Murphy RJ, Francis AW (2016) Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database. Biol Control 61:349–363

    CAS  Google Scholar 

  • Collignon R, Boroczky K, Mieles AE, Causton CE, Lincango MP, Teale SA (2014) Cuticular lipids and mate attraction in the avian parasite Philornis downsi (Diptera: Muscidae). International Society of Chemical Ecology. Poster July 8–12, 2014 University of Illinois at Urbana-Champaign

    Google Scholar 

  • Couri MS, de Carvalho CJB (2003) Systematic relations among Philornis Meinert, Passeromyia Rodhain and Villeneuve and allied genera (Diptera, Muscidae). Braz J Biol 63:223–232

    Article  CAS  PubMed  Google Scholar 

  • Couri MS, de Carvalho CJB, Löwenberg-Neto P (2007) Phylogeny of Philornis Meinert species (Diptera: Muscidae). Zootaxa 1530:19–26

    Google Scholar 

  • Couri MS, Rabuffetti F, Reboreda J (2005) New data on Philornis seguyi Garcia (1952) (Diptera, Muscidae). Braz J Biol 65:631–637

    Article  CAS  PubMed  Google Scholar 

  • Couri MS, Tavares MT, Stenzel RR (2006) Parasitoidism of chalcidid wasps (Hymenoptera, Chalcididae) on Philornis sp. (Diptera, Muscidae). Braz J Biol 66:553–557

    Article  CAS  PubMed  Google Scholar 

  • Crawley MJ (1986) The population biology of invaders. Philos Trans R Soc Lond Ser B Biol Sci 314:711–731

    Article  Google Scholar 

  • Crawley MJ (1989) The successes and failures of weed biocontrol using insects. Biocontrol News Info 10:213–223

    Google Scholar 

  • Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–329. https://doi.org/10.2980/i1195-6860-12-3-316.1

    Article  Google Scholar 

  • Cruz Martinéz J, Boada R, Causton CE (2007) Análisis del riesgo asociado al movimiento marítimo hacia y en el Archipiélago de Galapagos. Fundación Charles Darwin y Dirección Parque Nacional Galapagos, Puerto Ayora, Galapagos, Ecuador

    Google Scholar 

  • Cruz D, Causton CE (2007) Air traffic to Galapagos is increasing. In: GNPS, CDF, INGALA (ed) Galapagos report 2006–2007. Puerto Ayora, Galapagos, Ecuador, pp 48–57

    Google Scholar 

  • Cunninghame F, Switzer R, Parks B, Young HG, Carrión A, Medranda P, Sevilla C (2015) Conserving the critically endangered mangrove finch: head-starting to increase population size. In: GNPD, GCREG, CDF, GC (ed) Galapagos report 2013–2014. Puerto Ayora, Galapagos, Ecuador, pp 151–157

    Google Scholar 

  • Cunninghame F, Fessl B, Sevilla C, Young HG, La Greco N (2017) Long-term conservation management to save the critically endangered mangrove finch (Camarhynchus heliobates). In: GNPS, GCREG, CDF, GC (ed) Galapagos report 2015–2016. Puerto Ayora, Galapagos, Ecuador

    Google Scholar 

  • de Carvalho ME, Couri MS (1999) New associations between Philornis Meinert (Diptera, Muscidae) and Thamnophilidae (Aves, Passeriformes). Rev Bras Zool 16:1223–1225

    Article  Google Scholar 

  • Delvare G (1992) A reclassification of the Chalcidini with a checklist of the new world species. Mem Amer Entomol Inst 53:119–466

    Google Scholar 

  • Delvare G, Heimpel GE, Baur H, Chadee DD, Martinez R, Knutie SA (2017) Description of Brachymeria philornisae sp. n. (Hymenoptera: Chalcididae), a parasitoid of the bird parasite Philornis trinitensis (Diptera: Muscidae) in Tobago, with a review of the sibling species. Zootaxa 4242:34–60

    Article  PubMed  Google Scholar 

  • Dodge HR, Aitken THG (1968) Philornis flies from Trinidad (Diptera, Muscidae). J Kans Entomol Soc 41:134–154

    Google Scholar 

  • Dudaniec RY, Fessl B, Kleindorfer S (2007) Interannual and interspecific variation in intensity of the parasitic fly, Philornis downsi, in Darwin's finches. Biol Conserv 139:325–332. https://doi.org/10.1016/j.biocon.2007.07.006

    Article  Google Scholar 

  • Dudaniec RY, Gardner MG, Donnellan S, Kleindorfer S (2008) Genetic variation in the invasive avian parasite, Philornis downsi (Diptera, Muscidae) on the Galapagos archipelago. BMC Ecol 8:13. https://doi.org/10.1186/1472-6785-8-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dudaniec RY, Gardner MG, Kleindorfer S (2010) Offspring genetic structure reveals mating and nest infestation behaviour of an invasive parasitic fly (Philornis downsi) of Galapagos birds. Biol Invasions 12:581–592. https://doi.org/10.1007/s10530-009-9464-x

    Article  Google Scholar 

  • Dudaniec RY, Kleindorfer S (2006) Effects of the parasitic flies of the genus Philornis (Diptera, Muscidae) on birds. Emu 106:13–20

    Article  Google Scholar 

  • Dudaniec RY, Kleindorfer S, Fessl B (2006) Effects of the introduced ectoparasite Philornis downsi on haemoglobin level and nestling survival in Darwin's small ground finch (Geospiza fuliginosa). Austral Ecol 31:88–94

    Article  Google Scholar 

  • Duncan RP (2016) How propagule size and environmental suitability jointly determine establishment success: a test using dung beetle introductions. Biol Invasions 18:985–996. https://doi.org/10.1007/s10530-016-1083-8

    Article  Google Scholar 

  • Dvorak M, Fessl B, Nemeth E, Kleindorfer S, Tebbich S (2012) Distribution and abundance of Darwin’s finches and other land birds on Santa Cruz Island, Galapagos: evidence for declining populations. Oryx 46:1–9. https://doi.org/10.1017/S0030605311000597

    Article  Google Scholar 

  • Dvorak M, Nemeth E, Wendelin B, Herrera P, Mosquera Munoz DA, Anchundia D, Sevilla C, Tebbich S, Fessl B (2017) Conservation status of landbirds on Floreana: the smallest inhabited Galapagos Island. J Field Ornithol 88(2):132–145. https://doi.org/10.1111/jofo.12197

    Article  Google Scholar 

  • El-Sayed AM, Suckling DM, Wearing CH, Byers JA (2006) Potential of mass trapping for long-term pest management and eradication of invasive species. J Econ Entomol 99:1550–1564

    Article  CAS  PubMed  Google Scholar 

  • Engelkes T, Mills NJ (2011) A conceptual framework for understanding arthropod predator and parasitoid invasions. BioControl 56:383–393. https://doi.org/10.1007/s10526-011-9377-3

    Article  Google Scholar 

  • Fessl B, Couri M, Tebbich S (2001) Philornis downsi Dodge and Aitken, new to the Galápagos Islands, (Diptera, Muscidae). Studia Dipterologica 8:317–322

    Google Scholar 

  • Fessl B, Anchundia D, Carrion J, Cimadom A, Cotin J, Cunninghame F, Dvorak M, Mosquera Munoz DA, Nemeth E, Sevilla C, Tebbich S, Wendelin B, Causton CE (2017) Galapagos landbirds (passerines, cuckoos and doves) – status, threats and knowledge gaps. In: GNPS, GCREG, CDF, GC (ed) Galapagos report 2015–2016. Puerto Ayora, Galapagos, Ecuador

    Google Scholar 

  • Fessl B, Sinclair BJ, Kleindorfer S (2006a) The life cycle of Philornis downsi (Diptera: Muscidae) parasitizing Darwin’s finches and its impacts on nestling survival. Parasitology 133:739–747

    Google Scholar 

  • Fessl B, Kleindorfer S, Tebbich S (2006b) An experimental study on the effects of an introduced parasite in Darwin's finches. Biol Conserv 127:55–61

    Article  Google Scholar 

  • Fessl B, Tebbich S (2002) Philornis downsi - a recently discovered parasite on the Galapagos archipelago–a threat for Darwin's finches? Ibis 144:445–451

    Article  Google Scholar 

  • Fessl B, Young HG, Young RP, Rodriguez-Matamoros J, Dvorak M, Tebbich S, Fa JE (2010) How to save the rarest Darwin's finch from extinction: the mangrove finch on Isabela Island. Philos Trans R Soc Lond Ser B Biol Sci 365:1019–1030. https://doi.org/10.1098/rstb.2009.0288

    Article  Google Scholar 

  • Galligan TH, Kleindorfer S (2009) Naris and beak malformation caused by the parasitic fly, Philornis downsi (Diptera: Muscidae), in Darwin's small ground finch, Geospiza fuliginosa (Passeriformes: Emberizidae). Biol J Linn Soc 98:577–585

    Article  Google Scholar 

  • Gallizzi K, Richner H (2008) A parasite-induced maternal effect can reduce survival times of fleas feeding on great tit nestlings. Oikos 117:1209–1217

    Article  Google Scholar 

  • Garnas JR, Auger-Rozenberg MA, Roques A, Bertelsmeier C, Wingfield MJ, Saccaggi DL, Roy HE, Slippers B (2016) Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biol Invasions 18:935–952. https://doi.org/10.1007/s10530-016-1082-9

    Article  Google Scholar 

  • Geden CJ, Moon RD, Butler JF (2006) Host ranges of six solitary filth fly parasitoids (Hymenoptera: Pteromalidae, Chalcididae) from Florida, Eurasia, Morocco, and Brazil. Environ Entomol 35:405–412

    Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton

    Google Scholar 

  • Gold CS, Dahlsten DL (1983) Effects of parasitic flies (Protocalliphora) on nestlings of mountain and chestnut-backed chickadees. Wilson Bull 95:560–572

    Google Scholar 

  • Grant PR (1981) Patterns of growth in Darwin's finches. Proc R Soc Lond B Biol Sci 212:403–432

    Article  Google Scholar 

  • Grant PR (1986) Ecology and evolution of Darwin’s finches. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Grant PR, Grant BR, Petren K, Keller LF (2005) Extinction behind our backs: the possible fate of one of the Darwin's finch species on Isla Floreana, Galapagos. Biol Conserv 122:499–503

    Article  Google Scholar 

  • Grant PR, Grant K (1979) Breeding and feeding ecology of the Galapagos dove. The Condor 81:397–403

    Article  Google Scholar 

  • Grant PR, Grant BR (2008) How and why species multiply. The radiation of Darwin’s finches. Princeton University Press, Princeton

    Google Scholar 

  • Guerrero AM, Tye A (2009) Darwin's finches as seed predators and dispersers. Wilson J Ornit 121:752–764

    Article  Google Scholar 

  • Gwinner H, Oltrogge M, Trost L, Nienaber U (2000) Green plants in starling nests: effects on nestlings. Anim Behav 59:301–309. https://doi.org/10.1006/anbe.1999.1306

    Article  CAS  PubMed  Google Scholar 

  • Harmon WM, Clark WA, Hawbecker AC, Stafford M (1987) Trichomonas gallinae in columbiform birds from the Galapagos Islands (Ecuador). J Wildl Dis 23:492–494

    Article  CAS  PubMed  Google Scholar 

  • Hatcher MJ, Dick JTA, Dunn AM (2012) Disease emergence and invasions. Funct Ecol 26:1275–1287. https://doi.org/10.1111/j.1365-2435.2012.02031.x

    Article  Google Scholar 

  • Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invas 10:483–506. https://doi.org/10.1007/s10530-007-9146-5

    Article  Google Scholar 

  • Heeb P, Werner I, Kolliker M, Richner H (1998) Benefits of induced host responses against an ectoparasite. Proc R Soc Lond B 265:51–56

    Article  Google Scholar 

  • Heger T, Trepl L (2003) Predicting biological invasions. Biol Invasions 5:313–321

    Article  Google Scholar 

  • Heimpel GE, Mills NJ (2017) Biological control: ecology and applications. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Heimpel GE, Hillstrom A, Freund D, Knutie SA, Clayton DH (2017) Invasive parasites and the fate of Darwin’s finches in the Galapagos Islands: the case of the vegetarian finch (Platyspiza crassirostris). Wilson J Ornith 129:345–349

    Article  Google Scholar 

  • Heleno RH, Blake S, Jaramillo P, Traveset A, Vargas P, Nogales M (2011) Frugivory and seed dispersal in the Galapagos: what is the state of the art? Integr Zool 6:110–128. https://doi.org/10.1111/j.1749-4877.2011.00236.x

    Article  PubMed  Google Scholar 

  • Heleno RH, Olesen JM, Nogales M, Vargas P, Traveset A (2013) Seed dispersal networks in the Galapagos and the consequences of alien plant invasions. Proc R Soc Lond B 280:2012–2112

    Google Scholar 

  • Herrera HW (2011) Monitoreo de invertebrados terrestres en barcos de cargo desde Guayaquil a Galapagos. Informe al Ministerio del Ambiente del Ecuador. Charles Darwin Foundation, Puerto Ayora, Islas Galapagos, Ecuador

    Google Scholar 

  • Hickman J (1985) The Enchanted Islands: the Galapagos discovered. Anthony Nelson, Oswestry, UK

    Google Scholar 

  • Hoddle MR, Crespo Ramirez C, Hoddle CD, Loayza J, Lincango MP, van Driesche RG, Causton CE (2013) Post release evaluation of Rodolia cardinalis (Coleoptera: Coccinellidae) for control of Icerya purchasi (Hemiptera: Monophlebidae) in the Galapagos Islands. Biol Control 67:262–274

    Article  Google Scholar 

  • Hoeck P, Bollmer JL, Parker PG, Keller LF (2010) Differentiation with drift: a spatio-temporal genetic analysis of Galapagos mockingbird populations (Mimus spp.) Philos Trans R Soc Lond B 365:1127–1138. https://doi.org/10.1098/rstb.2009.0311

    Article  Google Scholar 

  • Huber SK (2008) Effects of the introduced parasite Philornis downsi on nestling growth and mortality in the medium ground finch (Geospiza fortis). Biol Conserv 141:601–609

    Article  Google Scholar 

  • Huber SK, Owen JP, Koop JAH, King MO, Grant PR, Grant BR, Clayton DH (2010) Ecoimmunity in Darwin’s finches: invasive parasites trigger acquired immunity in the medium ground finch (Geospiza fortis). PLoS One 5:e8605. https://doi.org/10.1371/journal.pone.0008605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hui C, Richardson DM, Landi P, Minoarivelo HO, Garnas J, Roy HE (2016) Defining invasiveness and invasibility in ecological networks. Biol Invas 18:971–983. https://doi.org/10.1007/s10530-016-1076-7

    Article  Google Scholar 

  • Hurtrez-Boussès S, Blondel J, Perret P, Fabreguettes J, Renaud F (1998) Chick parasitism by blowflies affects feeding rates in a Mediterranean population of blue tits. Ecol Lett 1:17–20

    Article  Google Scholar 

  • Hurtrez-Boussès S, Perret P, Renaud F, Blondel J (1997) High blowfly parasitic loads affect breeding success in a Mediterranean population of blue tits. Oecologia 112:514–517

    Article  PubMed  Google Scholar 

  • IUCN 2016. The IUCN Red List of Threatened Species. Version 2016. http://www.iucnredlist.org/. Accessed 15 March 2017

  • Jarošík V, Kenis M, Honěk A, Skuhrovec J, Pyšek P (2015) Invasive insects differ from non-indigeneous in their thermal requirements. PLoS One 10:e0131072. https://doi.org/10.1371/journal.pone.0131072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeschke J, Aparicio LG, Haider S, Heger T, Lortie C, Pyšek P, Strayer D (2012) Support for major hypotheses in invasion biology is uneven and declining. Neoobiota 14:1–20. https://doi.org/10.3897/neobiota.14.3435

    Article  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Klassen W, Curtis CF (2005) History of the sterile insect technique. In: Dyck V, Hendrichs J, Robinson A (eds) Sterile insect technique. Principles and practice in area-wide integrated pest management. Springer, Dordrecht, The Netherlands, pp 3–36

    Google Scholar 

  • Kleindorfer S, Dudaniec RY (2009) Love thy neighbour? Social nesting pattern, host mass and nest size affect ectoparasite intensity in Darwin’s tree finches. Behav Ecol Sociobiol 63:731–739. https://doi.org/10.1007/s00265-008-0706-1

    Article  Google Scholar 

  • Kleindorfer S, Peters KJ, Custance G, Dudaniec RY, O'Connor JA (2014) Changes in Philornis infestation behavior threaten Darwin’s finch survival. Curr Zool 60:542–550

    Article  Google Scholar 

  • Kleindorfer S, Sulloway FJ (2016) Naris deformation in Darwin's finches: experimental and historical evidence for a post-1960's arrival of the parasite Philornis downsi. Glob Ecol Conserv 7:0–9

    Google Scholar 

  • Kleindorfer S, Sulloway FJ, O’Connor JA (2009) Mixed species nesting associations in Darwin’s tree finches: nesting pattern predicts predation outcome. Biol J Linn Soc 98:313–324

    Article  Google Scholar 

  • Knutie SA, Koop JAH, French SS, Clayton DH (2013) Experimental test of the effect of introduced hematophagous flies on corticosterone levels of breeding Darwin’s finches. Gen Comp Endocrinol 193:68–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knutie SA, McNew SM, Bartlow AW, Vargas DA, Clayton D (2014) Darwin’s finches combat introduced nest parasites with fumigated cotton. Curr Biol 24(9):R355–R356. https://doi.org/10.1016/j.cub.2014.03.058

    Article  CAS  PubMed  Google Scholar 

  • Knutie SA, Owen JB, McNew SM, Bartlow AW, Arriero E, Herman JM, DiBlasi E, Thompson M, Koop JAH, Clayton DH (2016) Galapagos mockingbirds tolerate introduced parasites that affect Darwin's finches. Ecology 97:940–950. https://doi.org/10.1890/15-0119

    Google Scholar 

  • Knutie SA, Herman JM, Owen JB, Clayton DH (2017) Tri-trophic ecology of native parasitic nest flies of birds in Tobago. Ecosphere 8:e01670

    Article  Google Scholar 

  • Koop JAH, DeMatteo KE, Parker PG, Whiteman NK (2014) Birds are islands for parasites. Biol Lett 10:20140255. https://doi.org/10.1098/rsbl.2014.0255

    Article  PubMed  PubMed Central  Google Scholar 

  • Koop JAH, Huber SK, Laverty SM, Clayton DH (2011) Experimental demonstration of the fitness consequences of an introduced parasite of Darwin’s finches. PLoS One 6(5):e19706. https://doi.org/10.1371/journal.pone.0019706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koop JAH, Kim PS, Knutie SA, Adler F, Clayton D (2015) An introduced parasitic fly may lead to local extinction of Darwin’ s finch populations. J Appl Ecol 53:511–518. https://doi.org/10.1111/1365-2664.12575

    Article  PubMed  PubMed Central  Google Scholar 

  • Koop JAH, Le Bohec C, Clayton D (2013b) Dry year does not reduce invasive parasitic fly prevalence or abundance in Darwin's finch nests. Rep Parasitol 3:11–17. https://doi.org/10.2147/RIP.S48435

    Article  Google Scholar 

  • Koop JAH, Owen JB, Knutie SA, Aguilar MA, Clayton DH (2013a) Experimental demonstration of a parasite-induced immune response in wild birds: Darwin’s finches and introduced nest flies. Ecol Evol 3:2514–2523. https://doi.org/10.1002/ece3.651

    Article  PubMed  PubMed Central  Google Scholar 

  • Lack D (1947) Darwin's finches, an essay on the general biological theory of evolution. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Lahuatte PF, Lincango MP, Heimpel GE, Causton CE (2016) Rearing larvae of the avian nest parasite, Philornis downsi (Diptera: Muscidae) on chicken blood-based diets. J Insect Sci 84:1–7

    Google Scholar 

  • Lawton JH, Brown KC, Crawley MJ, Way MJ, Holdgate MW, May RM, Southwood R, O'Connor RJ (1986) The population and community ecology of invading insects. Phil Trans R Soc Lond B 314:607–617. https://doi.org/10.1098/rstb.1986.0076

    Article  Google Scholar 

  • Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408. https://doi.org/10.1146/annurev.ento.52.110405.091401

    Article  CAS  PubMed  Google Scholar 

  • Lincango MP, Causton CE, Calderón Alvarez C, Jiménez-Uzcátegui G (2011) Evaluating the safety of Rodolia cardinalis to two species of Galapagos finch; Camarhynchus parvulus and Geospiza fuliginosa. Biol Control 56:145–149. https://doi.org/10.1016/j.biocontrol.2010.10.006

    Article  Google Scholar 

  • Lincango PM, Causton CE (2008) Crianza en cautiverio de la mosca parasite de aves menores Philornis downsi (Diptera: Muscidae), en las Islas Galapagos. Charles Darwin Foundation, Quito, Ecuador

    Google Scholar 

  • Lincango PM, Causton CE, Cedeño D, Castañeda J, Hillstrom A, Freund D (2015) Interactions between the avian parasite, Philornis downsi (Diptera: Muscidae) and the Galapagos flycatcher, Myiarchus magnirostris Gould (Passeriformes: Tyrannidae). J Wildl Dis 51:907–910. https://doi.org/10.7589/2015-01-025

    Article  CAS  PubMed  Google Scholar 

  • Linsley EG, Usinger RL (1966) Insects of the Galapagos Islands. Proc Calif Acad Sci 33:113–196

    Google Scholar 

  • Lomas E (2008) Dispersión de insectos por las luces de los barcos en las Islas Galapagos: una prioridad de conservación. Undergraduate thesis. Universidad Central del Ecuador y Fundación Charles Darwin, Quito, Ecuador

    Google Scholar 

  • Lopez-Arrabé J, Alejandro C, Pérez-Rodríguez L, Palma A, Moreno J (2014) Experimental pyrethroid treatment underestimates the effects of ectoparasites in cavity-nesting birds due to toxicity. Ibis 156:606–614

    Article  Google Scholar 

  • Lubin YD (1985) Studies of the little red fire ant, Wasmannia auropunctata, in a Niño year. In: Robinson G, del Pino E (eds) El Niño en las Islas Galàpagos: el Evento de 1982–1983. Charles Darwin Foundation, Quito, Ecuador

    Google Scholar 

  • Lymbery AJ, Morine M, Kanani HG, Beatty SJ, Morgan DL (2014) Co-invaders: the effects of alien parasites on native hosts. Int J Parasitol Parasites wildl 3:171–177. https://doi.org/10.1016/j.ijppaw.2014.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  • MacFarland CG, Reeder WG (1974) Cleaning symbiosis involving Galapagos tortoises and two species of Darwin's finches. Z Tierpsychol 34:464–483

    Article  CAS  PubMed  Google Scholar 

  • Magrath RD (1991) Nestling weight and juvenile survival in the blackbird Turdus merula. J Anim Ecol 60:335–351

    Article  Google Scholar 

  • Merino S, Potti J (1998) Growth, nutrition, and blow fly parasitism in nestling pied flycatchers. Can J Zool 76:936–941

    Article  Google Scholar 

  • Nilsson J-A, Smith HG (1988) Incubation feeding as a male tactic for early hatching. Anim Behav 36:641–647. https://doi.org/10.1016/S0003-3472(88)80145-3

    Article  Google Scholar 

  • Nogales M, González-Castro A, Rumeu B, Traveset A, Vargas P, Jaramillo P, Olesen JM, Heleno R (2017) Contribution by vertebrates to seed dispersal effectiveness in the Galapagos Islands: a community-wide approach. Ecology 98(8):2049–2058. https://doi.org/10.1002/ecy.1816

    Article  CAS  PubMed  Google Scholar 

  • Nores AI (1995) Botfly ectoparasitism of the brown cacholote and the firewood gatherer. Wilson Bull 107:734–738

    Google Scholar 

  • Noyes JS (2017) Universal chalcidoidea database. World Wide Web electronic publication. http://www.nhm.ac.uk/chalcidoids

  • O'Brien EL, Morrison BL, Johnson LS (2001) Assessing the effects of haematophagous ectoparasites on the health of nestling birds: haematocrit vs haemoglobin levels in house wrens parasitized by blow fly larvae. J Avian Biol 32:73–76

    Article  Google Scholar 

  • O'Connor JA, Dudaniec RY, Kleindorfer S (2010b) Parasite infestation and predation in Darwin’s small ground finch: contrasting two elevational habitats between islands. J Trop Ecol 26:285–292. https://doi.org/10.1017/S0266467409990678

    Article  Google Scholar 

  • O'Connor JA, Robertson J, Kleindorfer S (2010a) Video analysis of host–parasite interactions in nests of Darwin’s finches. Oryx 44:588–594. https://doi.org/10.1017/S0030605310000086

    Article  Google Scholar 

  • O'Connor JA, Robertson J, Kleindorfer S (2013) Darwin’s finch begging intensity does not honestly signal need in parasitised nests. Ethology 119:1–10. https://doi.org/10.1111/eth.12196

    Article  Google Scholar 

  • O'Connor JA, Sulloway FJ, Robertson J, Kleindorfer S (2010c) Philornis downsi parasitism is the primary cause of nestling mortality in the critically endangered Darwin’s medium tree finch (Camarhynchus pauper). Biodivers Conserv 19:853–866. https://doi.org/10.1007/s10531-009-9740-1

    Article  Google Scholar 

  • Oppliger A, Christe P, Richner H (1996) Clutch size and malaria resistance. Nature 381:565

    Article  CAS  PubMed  Google Scholar 

  • Oppliger A, Richner H, Christe P (1994) Effect of an ectoparasite on lay date, nest-site choice, desertion, and hatching success in the great tit Parus major. Behav Ecol 5:130–134. https://doi.org/10.1093/beheco/5.2.130

    Article  Google Scholar 

  • Palma RL, Peck SB (2013) An annotated checklist of parasitic lice (Insecta: Phthiraptera) from the Galapagos Islands. Zootaxa 3627:1–87

    Article  PubMed  Google Scholar 

  • Parker PG, Whiteman NK, Miller R (2006) Conservation medicine on the Galapagos Islands: partnerships among behavioral, population and veterinary scientists. Auk 123:625–638

    Article  Google Scholar 

  • Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433. https://doi.org/10.1086/378926

    Article  PubMed  Google Scholar 

  • Prenter J, MacNeil C, Dick JT, Dunn AM (2004) Roles of parasites in animal invasions. Trends Ecol Evol 19:385–390. https://doi.org/10.1016/j.tree.2004.05.002

    Article  PubMed  Google Scholar 

  • Prior K, Powell TQ, Joseph A, Hellmann J (2015) Insights from community ecology into the role of enemy release in causing invasion success: the importance of native enemy effects. Biol Invas 17:1283–1297. https://doi.org/10.1007/s10530-014-0800-4

    Article  Google Scholar 

  • Quiroga MA, Reboreda JC (2012) Lethal and sublethal effects of botfly (Philornis seguyi) parasitism on house wren nestlings. Condor 114:197–202

    Article  Google Scholar 

  • Rabuffetti F, Reboreda JC (2007) Early infestation by botflies (Philornis seguyi) decreases chick survival and nesting success in chalk-browed mockingbirds (Mimus saturninus). Auk 124:898–906

    Article  Google Scholar 

  • Richner H, Christe P, Oppliger A (1995) Paternal investment affects prevalence of malaria. Proc Natl Acad Sci U S A 92:1192–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richner H, Tripet F (1999) Ectoparasitism and the trade-off between current and future reproduction. Oikos 86:535–538

    Article  Google Scholar 

  • Rodríguez J, Fessl B (2016) Population viability analysis to assess the impact of non-target mortality of the lava lizard and seven land bird species due to an eradication program of rodents and cats in Floreana Island, Galapagos. Conservation Breeding Specialist Group (IUCN/SSC/CBSG-Mesoamerica) and Charles Darwin Foundation for Island Conservation, Santa Cruz, Galapagos

    Google Scholar 

  • Roque-Albelo L, Berg M, Galarza M (2006) Polizontes pelogrosos. Dispersión de insectos entre las islas Galapagos en barcos de turismo. Fundación Charles Darwin, Quito, Ecuador

    Google Scholar 

  • Roque-Albelo L, Causton CE (1999) El Nino and introduced insects in the Galapagos islands: different dispersal strategies, similar effects. Noticias de Galapagos 60:30–36

    Google Scholar 

  • Roque-Albelo L, Chauca EL, Gaona OC (2008) Dispersal of insect species attracted to ship lights: conservation implications for Galapagos. In: CDF, GNP, INGALA (ed) Galapagos report 2007–2008. Puerto Ayora, Galapagos, pp 107–109

    Google Scholar 

  • Rosenberg DK, Wilson MH, Cruz F (1990) The distribution and abundance of the smooth-billed Ani Crotophaga ani L. in the Galapagos Islands, Ecuador. Biol Conserv 51:113–124

    Article  Google Scholar 

  • Sabrosky CW, Bennett GF, Withworth TL (1989) Bird blowflies (Protocalliphora) in North America (Diptera: Calliphoridae), with notes on the Palaeartic species. Smithsonian Institution Press, Washington, D.C.

    Book  Google Scholar 

  • Sakai A, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O'Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Sari E, Klompen H, Parker PG (2012) Tracking the origins of lice, haemosporidian parasites and feather mites of the Galapagos flycatcher (Myiarchus magnirostris). J Biogeogr 40:1082–1093. https://doi.org/10.1111/jbi.12059

    Article  Google Scholar 

  • Schmid-Hempel P, Ebert D (2003) On the evolutionary ecology of specific immune defence. Trends Ecol Evol 18:27–32

    Article  Google Scholar 

  • Segura L, Reboreda JC (2011) Botfly parasitism effects on nestling growth and mortality of red-crested cardinals. Wilson J Ornit 123:107–115. https://doi.org/10.1676/10-053.1

    Article  Google Scholar 

  • Sharov AA, Leonard D, Liebhold AM, Roberts EA, Dickerson W (2002) “Slow the spread,” a national program to contain the gypsy moth. J For 100:30–35

    Google Scholar 

  • Silvestri L, Antoniazzi LR, Couri MS, Monje LD, Beldomenico PM (2010) First record of the avian ectoparasite Philornis downsi Dodge & Aitken, 1968 (Diptera: Muscidae) in Argentina. Syst Parasit 80:137–140. https://doi.org/10.1007/s11230-011-9314-y

    Article  Google Scholar 

  • Silvestri L, Antoniazzi L, Couri M, Monje L, Beldomenico P (2011) First record of the avian ectoparasite Philornis downsi Dodge and Aitken, 1968 (Diptera: Muscidae) in Argentina. Syst Parasitol 80:137–140. https://doi.org/10.1007/s11230-011-9314-y

    Article  CAS  PubMed  Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102. https://doi.org/10.1146/annurev.ecolsys.110308.120304

    Article  Google Scholar 

  • Simon A, Thomas DW, Blondel J, Perret P, Lambrechts MM (2004) Physiological ecology of Mediterranean blue tits Parus caeruleus L.: effects of ectoparasites (Protocalliphora spp.) and food abundance on metabolic capacity of nestlings. Physiol Biochem Zool 77:492–501

    Article  PubMed  Google Scholar 

  • Simon A, Thomas DW, Speakman J, Blondel J, Perret P, Lambrechts MM (2005) Impact of ectoparasitic blowfly larvae (Protocalliphora spp.) on the behavior and energetics of nestling blue tits. J Field Ornith 76:402–410

    Article  Google Scholar 

  • Sinclair BJ (2015) CDF checklist of Galapagos flies–FCD Lista de especies de moscas y mosquitos de Galapagos. In: Bungartz F, Herrera H, Jaramillo P, Tirado N, Jiménez-Uzcátegui G, Ruiz D, Guézou A, Ziemmeck F (eds) Charles Darwin Foundation Galapagos species checklist. Charles Darwin Foundation, Puerto Ayora, Galapagos. http://www.darwinfoundation.org/datazone/checklists/terrestrial-invertebrates/diptera/ Last updated 10 Sep 2015

  • Snell HM, Stone PA, Snell HL (1996) A summary of geographical characteristics of the Galapagos Islands. J Biogeogr 23:619–624

    Article  Google Scholar 

  • Sorensen JG, Addison MF, Terblanche JS (2012) Mass rearing of insects for pest management: challenges, synergies and advances from evolutionary physiology. Crop Prot 38:87–94

    Article  Google Scholar 

  • Streby HM, Peterson SM, Kapfer PM (2009) Fledging success is a poor indicator of the effects of bird blow flies on ovenbird survival. Condor 111:193–197

    Article  Google Scholar 

  • Suckling DM (2014) Sex pheromones and semiochemicals offer an elegant future for pest management and biosecurity. In: XXIX International horticultural congress on horticulture: sustaining lives, livelihoods and landscapes (IHC2014), p. 375–382

    Google Scholar 

  • Teixeira DM (1999) Myiasis caused by obligatory parasites 1b. General observations on the biology of species of the genus Philornis Meinert, 1890 (Diptera, Muscidae). In: Guimarães J, Papavero N (eds) Myasis in man and animals in the Neotropical region. Bibliographic Data Base, Pleiade, FAPESP, pp 71–96

    Google Scholar 

  • Traveset A, Heleno R, Chamorro S, Vargas P, McMullen CK, Castro-Urgal R, Nogales M, Herrera HW, Olesen JM (2013) Invaders of pollination networks in the Galapagos Islands: emergence of novel communities. Proc R Soc Lond B 280:20123040. https://doi.org/10.1098/rspb.2012.3040

    Article  Google Scholar 

  • Traveset A, Olesen JM, Nogales M, Vargas P, Jaramillo P, Antolin E, Mar Trigo M, Heleno R (2015) Bird–flower visitation networks in the Galapagos unveil a widespread interaction release. Nat Commun 6:6376. https://doi.org/10.1038/ncomms7376

    Article  CAS  PubMed  Google Scholar 

  • Tripet F, Richner H (1999) Host responses to ectoparasites: food compensation by parent blue tits. Oikos 80:557–561. https://doi.org/10.2307/3545617

    Google Scholar 

  • Trueman M, d'Ozouville N (2010) Characterizing the Galapagos terrestrial climate in the face of global climate change. Noticias de Galapagos 67:26–37

    Google Scholar 

  • Tschirren B, Siitari H, Saladin V, Richner H (2009) Transgenerational immunity in a bird–ectoparasite system: do maternally transferred antibodies affect parasite fecundity or the offspring’s susceptibility to fleas? Ibis 151:160–170

    Article  Google Scholar 

  • Van Driesche RG, Carruthers R, Center T, Hoddle M, Hough-Goldstein J, Lea M et al (2010) Classical biological control for the protection of natural ecosystems. Biol Control 54:S2–S33

    Article  Google Scholar 

  • Waite J, Henry A, Clayton DH (2012) How effective is preening against mobile ectoparasites? An experimental test with pigeons and hippoboscid flies. Int J Parasitol 42:463–467

    Article  Google Scholar 

  • Wesolowski T (2001) Host-parasite interactions in natural holes: marsh tits (Parus palustris) and blow flies (Protocalliphora falcozi). J Zool 255:495–503

    Article  Google Scholar 

  • Wiedenfeld DA, Jimenez Uzcátegi GA, Fessl B, Kleindorfer S, Valarezo JC (2007) Distribution of the introduced parasitic fly Philornis downsi (Diptera, Muscidae) in the Galapagos Islands. Pacific Conserv Biol 13:14–19

    Article  Google Scholar 

  • Wikelski M, Foufopoulos J, Vargas HF, Snell HM (2004) Galapagos birds and disease: invasive pathogens as threats for island species. Ecol Soc 9:5. [online] URL: http://www.ecologyandsociety.org/vol9/iss1/art5

    Article  Google Scholar 

  • Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522. https://doi.org/10.1146/annurev.ento.53.103106.093323

    Article  CAS  PubMed  Google Scholar 

  • Wood DM (2010) Hippoboscidae (louse flies). In: Brown BV, Borkent A, Cumming JM, Wood DM, Woodley NE, Zumbado MA (eds) Manual of central American Diptera, vol 2. NRC Research Press, Ottawa, Ontario, Canada, pp 1241–1248

    Google Scholar 

  • Young BE (1993) Effects of the parasitic botfly Philornis carinatus on nestling house wrens, Troglodytes aedon, in Costa Rica. Oecologia 93:256–262

    Article  PubMed  Google Scholar 

  • Young HG, Cunninghame F, Fessl B, Vargas HF (2013) Mangrove finch Camarhynchus heliobates: an obligate mangrove specialist from the Galapagos islands. In: Gleason G, Victor T (eds) Mangrove ecosystems, biogeography, genetic diversity and conservation strategies. Nova Science Publisher, New York, pp 107–121

    Google Scholar 

  • Vreysen MJB, Robinson AS, Hendrichs J (eds) (2007) Area-wide control of insect pests. Springer, Dordrecht, The Netherlands

    Google Scholar 

Download references

Acknowledgements

We thank California Academy of Science for access to specimens, Mariana Bulgarella, Martin Quiroga and Mauricio Torres for help with Fig. 9.15, Brad Sinclair for his insights on hippoboscids and Jen Koop and Peter Boag for useful discussion. Permission to conduct this study was granted by the Galapagos National Park Directorate (Project: PC- 10-15 & 18-16: Control of the Invasive Parasite, Philornis downsi and its Impact on Biodiversity) and the Ecuadorian Ministry of the Environment. This work was supported by funding from the Galapagos Conservancy, the International Community Foundation (with a grant awarded by The Leona M. and Harry B. Helmsley Charitable Trust), University of Minnesota Institute on the Environment, McKnight Foundation and National Geographic. We thank Sabine Tebbich and Arno Cimadom for critical comments on an earlier version of the manuscript. This is contribution number 2169 of the Charles Darwin Foundation for the Galapagos Islands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Fessl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Fessl, B., Heimpel, G.E., Causton, C.E. (2018). Invasion of an Avian Nest Parasite, Philornis downsi, to the Galapagos Islands: Colonization History, Adaptations to Novel Ecosystems, and Conservation Challenges. In: Parker, P. (eds) Disease Ecology. Social and Ecological Interactions in the Galapagos Islands. Springer, Cham. https://doi.org/10.1007/978-3-319-65909-1_9

Download citation

Publish with us

Policies and ethics