Skip to main content

Genetic Diversity in Endemic Galápagos Birds: Patterns and Implications

  • Chapter
  • First Online:
Disease Ecology

Abstract

Due to their smaller sizes and isolation, island populations generally have reduced genetic variability, which can have negative fitness consequences. The Galápagos Islands have played a unique and important role in our understanding of evolution, and the population genetics of bird species native to the islands is relatively well studied. Native Galápagos bird species exhibit a range of genetic patterns at neutral loci. For example, hawk and mockingbird population genetic variability is closely correlated with island size, demonstrating the effect of genetic drift, whereas gene flow has mitigated the effect of drift in dove and finch populations, resulting in higher genetic variability. Similarly, Galápagos seabirds exhibit a range of patterns, with some having greatly reduced variation compared to relatives outside of Galápagos (e.g., magnificent frigatebirds, penguins) and others having relatively high genetic variability (e.g., great frigatebirds). Published studies of major histocompatibility variability in hawks and penguins show a pattern of reduced variability at functional loci for Galápagos species compared to mainland congeners. Research has also demonstrated a relationship between genetic variability and fitness in some Galápagos species. Galápagos hawks have weaker innate immune function and higher louse loads than their more heterozygous mainland congener, and medium ground finches with higher heterozygosity are more likely to survive and breed. In contrast, no relationship between inbreeding and innate immune function or ectoparasite load was detected for mockingbirds. Further study of the population genetic dynamics of these species will continue to better inform management practices in the face of evolving threats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo-Whitehouse K, Cunningham AA (2006) Is MHC enough for understanding wildlife immunogenetics? Trends Ecol Evol 21:433–438

    Article  PubMed  Google Scholar 

  • Acevedo-Whitehouse K, Gulland F, Greig D, Amos W (2003) Disease susceptibility in California sea lions. Nature 422:35

    Article  CAS  PubMed  Google Scholar 

  • Adelman MK, Schluter SF, Marchalonis JJ (2004) The natural antibody repertoire of sharks and humans recognizes the potential universe of antigens. Protein J 23:103–118

    Article  CAS  PubMed  Google Scholar 

  • Akst EP, Boersma PD, Fleischer RC (2002) A comparison of genetic diversity between the Galápagos penguin and the Magellanic penguin. Conserv Genet 3:375–383

    Article  CAS  Google Scholar 

  • Arbogast BS, Drovetski SV, Currey RL, Boag PT, Seutin G, Grant PR, Grant BR, Anderson DJ (2006) The origin and diversification of Galapagos mockingbirds. Evolution 60:370–382

    Article  PubMed  Google Scholar 

  • Atkinson CT, Dusek RJ, Woods KL, Iko WM (2000) Pathogenicity of avian malaria in experimentally-infected Hawaii Amakihi. J Wildl Dis 36:197–204

    Article  CAS  PubMed  Google Scholar 

  • Babik W, Durka W, Radwan J (2005) Sequence diversity of the MHC DRB gene in the Eurasian beaver (Castor fiber). Mol Ecol 14:4249–4257

    Article  CAS  PubMed  Google Scholar 

  • Babik W, Pabijan M, Arntzen JW, Cogălniceanu D, Durka W, Radwan J (2009) Long-term survival of a urodele amphibian despite depleted major histocompatibility complex variation. Mol Ecol 18:769–781

    Article  CAS  PubMed  Google Scholar 

  • Bataille A, Cashins SD, Grogan L, Skerratt LF, Hunter D, McFadden M, Scheele B, Brannelly LA, Macris A, Harlow PS, Bell S, Berger L, Waldman B (2015) Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proc Biol Sci 282:20143127

    Article  PubMed  PubMed Central  Google Scholar 

  • Beadell JS, Atkins C, Cashion E, Jonker M, Fleischer RC (2007) Immunological change in a parasite-impoverished environment: divergent signals from four island taxa. PLoS One 2(9):e896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377

    Article  CAS  PubMed  Google Scholar 

  • Berry A, Ajioka JW, Kreitman M (1991) Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics 129:1111–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bichet C, Moodley Y, Penn DJ, Sorci G, Garniere S (2015) Genetic structure in insular and mainland populations of house sparrows (Passer domesticus) and their hemosporidian parasites. Ecol Evol 5:1639–1652

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45

    Article  CAS  PubMed  Google Scholar 

  • Bollmer JL, Hull JM, Ernest HB, Sarasola JH, Parker PG (2011) Reduced MHC and neutral variation in the Galápagos hawk, an island endemic. BMC Evol Biol 11:143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollmer JL, Kimball RT, Whiteman NK, Sarasola JH, Parker PG (2006) Phylogeography of the Galápagos hawk (Buteo galapagoensis): a recent arrival to the Galápagos Islands. Mol Phylogenet Evol 39:237–247

    Article  CAS  PubMed  Google Scholar 

  • Bollmer JL, Vargas FH, Parker PG (2007) Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus). Immunogenetics 59:593–602

    Article  CAS  PubMed  Google Scholar 

  • Bollmer JL, Whiteman NK, Cannon MD, Bednarz JC, de Vries TJ, Parker PG (2005) Population genetics of the Galápagos hawk (Buteo galapagoensis): genetic monomorphism within isolated populations. Auk 122:1210–1224

    Article  Google Scholar 

  • Bonneaud C, Pérez-Tris J, Federici P, Chastel O, Sorci G (2006) Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution 60:383–389

    Article  CAS  PubMed  Google Scholar 

  • Brock PM, Goodman SJ, Hall AJ, Cruz M, Acevedo-Whitehouse K (2015) Context-dependent associations between heterozygosity and immune variation in a wild carnivore. BMC Evol Biol 15:242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chapman JR, Nakagawa S, Coltman DW, Slate J, Sheldon BC (2009) A quantitative review of heterozygosity-fitness correlations in animal populations. Mol Ecol 18:2746–2765

    Article  CAS  PubMed  Google Scholar 

  • Chaves JA, Parker PG, Smith TB (2012) Origin and population history of a recent colonizer, the yellow warbler in Galápagos and Cocos Islands. J Evol Biol 25:509–521

    Article  CAS  PubMed  Google Scholar 

  • Crnokrak P, Roff D (1999) Inbreeding depression in the wild. Heredity 83:260–270

    Article  PubMed  Google Scholar 

  • Cruz JB, Cruz F (1987) Conservation of the dark-rumped petrel Pterodroma phaeopygia in the Galápagos Islands, Ecuador. Biol Conserv 42:303–311

    Article  Google Scholar 

  • Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772

    Article  Google Scholar 

  • Deem SL, Rivera-Parra JL, Parker PG (2012) Health status of Galapagos hawks on Santiago Island, Galapagos. J Wild Dis 48:39–46

    Article  CAS  Google Scholar 

  • de Groot N, Heijmans CMC, de Groot N, Otting N, de Vos-Rouweler AJM, Remarque EJ, Bonhomme M, Doxiadis GGM, Crouau-Roy B, Bontrop R (2008) Pinpointing a selective sweep to the chimpanzee MHC class I region by comparative genomics. Mol Ecol 17:2074–2088

    Article  PubMed  CAS  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52

    Article  CAS  PubMed  Google Scholar 

  • Duffie CV, Glenn TC, Vargas H, Parker PG (2009) Genetic structure within and between island populations of the flightless cormorant (Phalacrocorax harrisi). Mol Ecol 18:2103–2111

    Article  PubMed  Google Scholar 

  • Dunn PO, Bollmer JL, Freeman-Gallant CR, Whittingham LA (2013) MHC variation is related to a sexually selected ornament, survival, and parasite resistance in common yellowthroats. Evolution 67:679–687

    Article  CAS  PubMed  Google Scholar 

  • Eastwood G, Goodman SJ, Hilgert N, Cruz M, Kramer LD, Cunningham AA (2014) Using avian surveillance in Ecuador to assess the imminence of West Nile virus incursion to Galápagos. Ecohealth 11:53–62

    Article  PubMed  Google Scholar 

  • Eimes JA, Bollmer JL, Whittingham LA, Johnson JA, van Oosterhout C, Dunn PO (2011) Rapid loss of MHC class II variation in a bottlenecked population is explained by drift and loss of copy number variation. J Evol Biol 24:1847–1856

    Article  CAS  PubMed  Google Scholar 

  • Eizaguirre C, Lenz TL, Kalbe M, Milinski M (2012) Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat Commun 3:621. doi:10.1038/ncomms1632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farrington HL, Lawson LP, Clark CM, Petren K (2014) The evolutionary history of Darwin’s finches: speciation, gene flow, and introgression in a fragmented landscape. Evolution 68:2932–2944

    Article  PubMed  Google Scholar 

  • Fisher MC, Garner TWJ, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310

    Article  CAS  PubMed  Google Scholar 

  • Forstmeier W, Schielzeth H, Mueller JC, Ellegren H, Kempenaers B (2012) Heterozygosity-fitness correlations in zebra finches: microsatellite markers can be better than their reputation. Mol Ecol 21:3237–3249

    Article  PubMed  Google Scholar 

  • Frankham R (1995) Inbreeding and extinction: a threshold effect. Conserv Biol 9:792–799

    Article  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618

    Article  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Friesen VL, Gonzalez JA, Cruz-Delgado F (2006) Population genetic structure and conservation of the Galápagos petrel (Pterodroma phaeopygia). Conserv Genet 7:105–115

    Article  Google Scholar 

  • Fromont E, Morvilliers L, Artois M, Pontier D (2001) Parasite richness and abundance in insular and mainland feral cats: insularity or density? Parasitology 123:143–151

    Article  CAS  PubMed  Google Scholar 

  • Garrigan D, Hedrick PW (2003) Detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–1722

    Article  CAS  PubMed  Google Scholar 

  • Groombridge JJ, Jones CG, Bruford MW, Nichols RA (2000) “Ghost” alleles of the Mauritius kestrel. Nature 403:616

    Article  CAS  PubMed  Google Scholar 

  • Hailer F, Schreiber EA, Miller JM, Levin II, Parker PG, Chesser RT, Fleischer RC (2011) Long-term isolation of a highly mobile seabird on the Galápagos. Proc R Soc B 278:817–825

    Article  PubMed  Google Scholar 

  • Hedrick PW, Parker KM, Gutierrez-Espeleta GA, Rattink A, Lievers K (2000) Major histocompatibility complex variation in the Arabian oryx. Evolution 54:2145–2151

    Article  CAS  PubMed  Google Scholar 

  • Hoeck PEA, Bollmer JL, Parker PG, Keller LF (2010) Differentiation with drift: a spatio-temporal genetic analysis of Galápagos mockingbird populations (Mimus spp.) Phil Trans R Soc B 355:1127–1138

    Article  Google Scholar 

  • Hoeck PEA, Keller LF (2012) Inbreeding, immune defence and ectoparasite load in different mockingbird populations and species in the Galápagos Islands. J Avian Biol 43:423–434

    Article  Google Scholar 

  • Huyvaert KP, Anderson DJ, Jones TC, Duan W, Parker PG (2000) Extra-pair paternity in waved albatrosses. Mol Ecol 9:1415–1419

    Article  CAS  PubMed  Google Scholar 

  • Huyvaert KP, Parker PG (2010) Extra-pair paternity in waved albatrosses: genetic relationships among females, social mates and genetic sires. Behaviour 147:1591–1613

    Article  Google Scholar 

  • Janeway CA, Travers P, Walport M, Shlomchik MJ (2001) Immunobiology: the immune system in health and disease. Garland Publishing, New York

    Google Scholar 

  • Jiménez-Uzcátegui G, Wiedenfeld DA, Vargas FH, Snell HL (2016) CDF checklist of Galapagos birds-FCD Lista de especies de Aves Galápagos. In: Bungartz F, Herrera H, Jaramillo P, Tirado N, Jiménez-Uzcátegui G, Ruiz D, Guézou A, Ziemmeck F (eds) Charles Darwin Foundation Galapagos Species Checklist-Lista de Especies de Galápagos de la Fundación Charles Darwin. Charles Darwin Foundation, Puerto Ayora, Galapagos. http://darwinfoundation.org/datazone/checklists/vertebrates/aves/ Last updated: 24 Aug 2016

    Google Scholar 

  • Jones MR, Cheviron ZA, Carling MD (2015) Spatially variable coevolution between a haemosporidian parasite and the MHC of a widely distributed passerine. Ecol Evol 5:1045–1060

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalbe M, Eizaguirre C, Dankert I, Reusch TBH, Sommerfeld RD, Wegner KM, Milinski M (2009) Lifetime reproductive success is maximized with optimal major histocompatibility complex diversity. Proc R Soc B 276:925–934

    Article  PubMed  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Kikkawa EF, Tsuda TT, Naruse TK, Sumiyama D, Fukuda M, Kurita M, Murata K, Wilson RP, LeMaho Y, Tsuda M, Kulski JK, Inoko H (2005) Analysis of the sequence variations in the Mhc DRB1-like gene of the endangered Humboldt penguin (Spheniscus humboldti). Immunogenetics 57:99–107

    Article  CAS  PubMed  Google Scholar 

  • Kikkawa EF, Tsuda TT, Sumiyama D, Naruse TK, Fukuda M, Kurita M, Wilson RP, LeMaho Y, Miller GD, Tsuda M, Murata K, Kulski J, Inoko H (2009) Trans-species polymorphism of the Mhc class II DRB-like gene in banded penguins (genus Spheniscus). Immunogenetics 61:341–352

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Knafler GJ, Clark JA, Boersma PD, Bouzat JL (2012) MHC diversity and mate choice in the Magellanic penguin, Spheniscus magellanicus. J Hered 103:759–768

    Article  PubMed  Google Scholar 

  • Koop JAH, DeMatteo KE, Parker PG, Whiteman NK (2014) Birds are islands for parasites. Biol Lett 10:20140255

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Lamichhaney S, Berglund J, Almén MS et al (2015) Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518:371–375

    Article  CAS  PubMed  Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241(4872):1455–1460

    Article  CAS  PubMed  Google Scholar 

  • Lau Q, Jaratlerdsiri W, Griffith JE, Gongora J, Higgins DP (2014) MHC class II diversity of koala (Phascolarctos cinereus) populations across their range. Heredity 113:287–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leberg PL (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46:477–494

    Article  PubMed  Google Scholar 

  • Lenz TL, Mueller B, Trillmich F, Wolf JBW (2013) Divergent allele advantage at MHC-DRB through direct and maternal genotypic effects and its consequences for allele pool composition and mating. Proc R Soc B 280:20130714

    Article  PubMed  PubMed Central  Google Scholar 

  • Levin II, Parker PG (2012) Philopatry drives genetic differentiation in an island archipelago: comparative population genetics of Galápagos Nazca boobies (Sula granti) and great frigatebirds (Fregata minor). Ecol Evol 2:2775–2787

    Article  PubMed  PubMed Central  Google Scholar 

  • Levin II, Outlaw DC, Vargas FH, Parker PG (2009) Plasmodium blood parasite found in endangered Galapagos penguins (Spheniscus mendiculus). Biol Conserv 142:3191–3195

    Article  Google Scholar 

  • Levin II, Zwiers P, Deem SL, Geest EA, Higashiguchi JM, Iezhova TA, Jiménez-Uzcátegui G, Kim DH, Morton JP, Perlut NG, Renfrew RB, Sari EHR, Valkiunas G, Parker PG (2013) Multiple lineages of avian malaria parasites (Plasmodium) in the Galapagos Islands and evidence for arrival via migratory birds. Conserv Biol 27:1366–1377

    Article  CAS  PubMed  Google Scholar 

  • Loiseau C, Zoorob R, Garnier S, Birard J, Federici P, Julliard R, Sorci G (2008) Antagonistic effects of a Mhc class I allele on malaria-infected house sparrows. Ecol Lett 11:258–265

    Article  PubMed  Google Scholar 

  • Markert JA, Grant PR, Grant BR, Keller LF, Coombs JL, Petren K (2004) Neutral locus heterozygosity, inbreeding, and survival in Darwin’s ground finches (Geospiza fortis and G. scandens). Heredity 92:306–315

    Article  CAS  PubMed  Google Scholar 

  • Maruyama T, Nei M (1981) Genetic variability maintained by mutation and overdominant selection in finite populations. Genetics 98:441–459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matson KD, Ricklefs RE, Klasing KC (2005) A homolysis-hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev Comp Immunol 29:275–286

    Article  CAS  PubMed  Google Scholar 

  • Mikko S, Andersson L (1995) Low major histocompatibility complex class II diversity in European and north American moose. Proc Natl Acad Sci U S A 92:4259–4263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller HC, Lambert DM (2004) Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol Ecol 13:3709–3721

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevo E, Beiles A, Ben-Shlomo R (1984) The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. Evol Dyn Genet Diver 53:13–213

    Article  Google Scholar 

  • Nims BD, Vargas FH, Merkel J, Parker PG (2008) Low genetic diversity and lack of population structure in the endangered Galápagos penguin (Spheniscus mendiculus). Conserv Genet 9:1413–1420

    Article  Google Scholar 

  • O’Grady JJ, Brook BW, Reed DH, Ballou JD, Tonkyn DW, Frankham R (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol Conserv 133:42–51

    Article  Google Scholar 

  • Olano-Marin J, Mueller JC, Kempenaers B (2011) Correlations between heterozygosity and reproductive success in the blue tit (Cyanistes caeruleus): an analysis of inbreeding and single locus effects. Evolution 65:3175–3194

    Article  PubMed  Google Scholar 

  • Osborne AJ, Pearson J, Negro SS, Chilvers BL, Kennedy MA, Gemmell NJ (2015) Heterozygote advantage at MHC DRB may influence response to infectious disease epizootics. Mol Ecol 24:1419–1432

    Article  PubMed  Google Scholar 

  • Palmer JL, McCutchan TF, Vargas FH, Deem SL, Cruz M, Hartman DA, Parker PG (2013) Seroprevalence of malarial antibodies in Galapagos penguins (Spheniscus mendiculus). J Parasitol 99:770–776

    Article  PubMed  Google Scholar 

  • Parker PG, Deem SL (2012) Wildlife health monitoring and disease management: protecting the biodiversity of Galapagos. In: Wolff M, Gardener M (eds) The role of science for conservation. Routledge, New York, pp 165–176

    Google Scholar 

  • Parker PG, Whiteman NK, Miller RE (2006) Conservation medicine on the Galápagos islands: partnerships among behavioral, population, and veterinary scientists. Auk 123:625–638

    Article  Google Scholar 

  • Parker Rabenold P, Rabenold KN, Piper WH, Decker MD, Haydock J (1991) Using DNA fingerprinting to assess kinship and genetic structure in avian populations. In: Dudley EC (ed) Proceedings of the fourth international congress of systematic and evolutionary biology. Dioscorides Press, Portland, Oregon, pp 611–620

    Google Scholar 

  • Parmentier HK, Lammers A, Hoekman JJ, De Vries RG, Zaanen IT, Savelkoul HF (2004) Different levels of natural antibodies in chickens divergently selected for specific antibody responses. Dev Comp Immunol 28:39–49

    Article  CAS  PubMed  Google Scholar 

  • Penn D, Damjanovich K, Potts W (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. PNAS 99:11260–11264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21

    CAS  PubMed  Google Scholar 

  • Price RD, Hellenthal RA, Palma RL (2003) World checklist of chewing lice with host associations and keys to families and genera. In: Price RD, Hellenthal RA, Palma RL, Johnson KP, Clayton DH (eds) The chewing lice: world checklist and biological overview. Illinois Natural History Survey Special Publication 24, Champaign, Illinois, pp 1–448

    Google Scholar 

  • Promerová M, Albrecht T, Bryja J (2009) Extremely high MHC class I variation in a population of a long-distance migrant, the scarlet Rosefinch (Carpodacus erythrinus). Immunogenetics 61:451–461

    Article  PubMed  CAS  Google Scholar 

  • Petren K, Grant PR, Grant BR, Keller LF (2005) Comparative landscape genetics and the adaptive radiation of Darwin’s finches: the role of peripheral isolation. Mol Ecol 14(10):2943–2957

    Google Scholar 

  • Radwan J, Biedrzycka A, Babik W (2010) Does reduced MHC diversity decrease viability of vertebrate populations? Biol Conserv 143:537–544

    Article  Google Scholar 

  • Richardson DS, Westerdahl H (2003) MHC diversity in two Acrocephalus species: the outbred great reed warbler and the inbred Seychelles warbler. Mol Ecol 12:3523–3529

    Article  CAS  PubMed  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Santiago-Alarcon D, Tanksley SM, Parker PG (2006) Morphological variation and genetic structure of Galápagos dove (Zenaida galapagoensis) populations: issues in conservation for the Galápagos bird fauna. Wilson J Ornith 118:194–207

    Article  Google Scholar 

  • Sari EHR, Parker PG (2012) Understanding the colonization history of the Galápagos flycatcher (Myiarchus magnirostris). Mol Phylogenet Evol 63:244–254

    Article  PubMed  Google Scholar 

  • Seddon JM, Baverstock PR (1999) Variation on islands: major histocompatibility complex (MHC) polymorphism in populations of the Australian bush rat. Mol Ecol 8:2071–2079

    Article  CAS  PubMed  Google Scholar 

  • Sin YW, Annavi G, Dugdale HL, Newman C, Burke T, MacDonald DW (2014) Pathogen burden, co-infection and major histocompatibility complex variability in the European badger (Meles meles). Mol Ecol 23:5072–5088

    Article  CAS  PubMed  Google Scholar 

  • Slade RW (1992) Limited MHC polymorphism in the southern elephant seal: implications for MHC evolution and marine mammal population biology. Proc R Soc Lond B 249:163–171

    Article  CAS  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Ann Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Smith AL, Friesen VL (2007) Differentiation of sympatric populations of the band-rumped storm-petrel in the Galapagos Islands: an examination of genetics, morphology, and vocalizations. Mol Ecol 16:1593–1603

    Article  CAS  PubMed  Google Scholar 

  • Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B 277:979–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, Trifunovic A, Larsson NG (2008) Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol 6(1):e10. doi:10.1371/journal.pbio.0060010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Templeton AR, Shaw K, Routman E, Davis SK (1990) The genetic consequences of habitat fragmentation. Ann Mo Bot Gard 77:13–27

    Article  Google Scholar 

  • Townsend AK, Clark AB, McGowan KJ, Miller AD, Buckles E (2010) Condition, innate immunity and disease mortality of inbred crows. Proc R Soc B 277:2875–2883

    Article  PubMed  PubMed Central  Google Scholar 

  • Travis EK, Vargas FH, Merkel J, Gottdenker N, Miller RE, Parker PG (2006) Hematology, serum chemistry, and serology of Galápagos penguins (Spheniscus mendiculus) in the Galápagos Islands, Ecuador. J Wildl Dis 42:625–632

    Article  CAS  PubMed  Google Scholar 

  • van Oosterhout C, Joyce DA, Cummings SM, Blais J, Barson NJ, Ramnarine IW, Mohammed RS, Persad N, Cable J (2006) Balancing selection, random genetic drift, and genetic variation at the major histocompatibility complex in two wild populations of guppies (Poecilia reticulata). Evolution 60:2562–2574

    Article  PubMed  Google Scholar 

  • Vargas FH, Wiedenfeld D (2004) Summary report: 2004 penguin and cormorant survey. University of Oxford and Charles Darwin Foundation, Oxford

    Google Scholar 

  • Vlček J, Hoeck PEA, Keller LF, Wayhart JP, Dolinová I, Štefka J (2016) Balancing selection and genetic drift create unusual patterns of MHCIIβ variation in Galápagos mockingbirds. Mol Ecol 25:4757–4772

    Article  PubMed  CAS  Google Scholar 

  • Warner RE (1968) The role of introduced diseases in the extinction of the endemic Hawaiian avifauna. Condor 70:101–120

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Westerdahl H, Wittzell H, von Schantz T, Bensch S (2004) MHC class I typing in a songbird with numerous loci and high polymorphism using motif specific PCR and DGGE. Heredity 92:534–542

    Article  CAS  PubMed  Google Scholar 

  • Whiteman NK, Matson KD, Bollmer JL, Parker PG (2006) Disease ecology in the Galápagos hawk (Buteo galapagoensis): host genetic diversity, parasite load and natural antibodies. Proc R Soc B 273:797–804

    Article  PubMed  Google Scholar 

  • Wikelski M, Foufopoulos J, Vargas H, Snell H (2004) Galápagos birds and diseases: invasive pathogens as threats for island species. Ecol Soc 9(1):5

    Article  Google Scholar 

  • Worley K, Collet J, Spurgin LG, Cornwallis C, Pizzari T, Richardson DS (2010) MHC heterozygosity and survival in red junglefowl. Mol Ecol 19:3064–3075

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Bollmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bollmer, J.L., Nims, B.D. (2018). Genetic Diversity in Endemic Galápagos Birds: Patterns and Implications. In: Parker, P. (eds) Disease Ecology. Social and Ecological Interactions in the Galapagos Islands. Springer, Cham. https://doi.org/10.1007/978-3-319-65909-1_4

Download citation

Publish with us

Policies and ethics