Skip to main content

Assessment of Exercise Capacity

  • Chapter
  • First Online:
Textbook of Pulmonary Rehabilitation

Abstract

Exercise intolerance is a condition where the patient is unable to undertake physical exercise at the level and/or for the duration that would be expected of someone in his or her age and general physical condition. When this inability is triggered by impaired function of one or more of the physiological systems (i.e. central haemodynamic, respiratory, peripheral muscles), the result is the intensification of the perceptions of dyspnoea, often in conjunction with peripheral muscle discomfort that is often triggered by peripheral muscle fatigue [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Whipp BJ, Wagner PD, Agusti A. Determinants of the physiological systems responses to muscular exercise in healthy subjects. In:European respiratory monograph. United Kingdom: European Respiratory Society; 2007. p. 30–4.

    Google Scholar 

  2. O’Donnell DE, et al. Qualitative aspects of exertional breathlessness in chronic airflow limitation: pathophysiologic mechanisms. Am J Respir Crit Care Med. 1997;155(1):109–15.

    Article  PubMed  Google Scholar 

  3. Wagner PD. Determinants of maximal oxygen transport and utilization. Annu Rev Physiol. 1996;58:21–50.

    Article  PubMed  CAS  Google Scholar 

  4. Mador MJ, Kufel TJ, Pineda L. Quadriceps fatigue after cycle exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;161(2 Pt 1):447–53.

    Article  Google Scholar 

  5. Roca J, et al. Guidelines for interpretation. In: Roca J, Whipp BJ, editors. European respiratory monograph. United Knigdom: European Respiratory Society; 1997. p. 88–114.

    Google Scholar 

  6. Killian KJ. Limitation to muscular activity in chronic obstructive pulmonary disease. Eur Respir J. 2004;24(1):6–7.

    Article  PubMed  CAS  Google Scholar 

  7. Palange P, et al. Recommendation on the use of exercise testing in clinical practice. Eur Respir J. 2007;29:185–209.

    Article  PubMed  CAS  Google Scholar 

  8. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–7.

    Article  Google Scholar 

  9. Singh SJ, et al. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax. 1992;47(12):1019–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Revill SM, et al. The endurance shuttle walk: a new field test for the assessment of endurance capacity in chronic obstructive pulmonary disease. Thorax. 1999;54(3):213–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Troosters T, et al. Physiological responses to the 6-min walk test in patients with chronic obstructive pulmonary disease. Eur Respir J. 2002;20(3):564–9.

    Article  PubMed  CAS  Google Scholar 

  12. Onorati P, et al. Non-invasive evaluation of gas exchange during a shuttle walking test vs. a 6-min walking test to assess exercise tolerance in COPD patients. Eur J Appl Physiol. 2003;89(3–4):331–6.

    Article  PubMed  Google Scholar 

  13. Rice AJ, et al. Pulmonary gas exchange during exercise in highly trained cyclists with arterial hypoxemia. J Appl Physiol. 1999;87(5):1802–12.

    Article  PubMed  CAS  Google Scholar 

  14. Richardson RS, et al. Determinants of maximal exercise VO2 during single leg knee-extensor exercise in humans. Am J Phys. 1995;268(4 Pt 2):H1453–61.

    CAS  Google Scholar 

  15. Saltin B, Calbet JA, Wagner PD. Point: in health and in a normoxic environment, VO2 max is limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol. 2006;100:744–8.

    Article  PubMed  Google Scholar 

  16. Ekblom B, Hermansen L. Cardiac output in athletes. J Appl Physiol. 1968;25(5):619–25.

    Article  PubMed  CAS  Google Scholar 

  17. Grimby G, Nilsson NJ, Saltin B. Cardiac output during submaximal and maximal exercise in active middle-aged athletes. J Appl Physiol. 1966;21(4):1150–6.

    Article  PubMed  CAS  Google Scholar 

  18. Mitchell JH, Sproule BJ, Chapman CB. The physiological meaning of the maximal oxygen intake test. J Clin Invest. 1958;37(4):538–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Saltin B. Circulatory response to submaximal and maximal exercise after thermal dehydration. J Appl Physiol. 1964;19:1125–32.

    Article  PubMed  CAS  Google Scholar 

  20. Koskolou MD, et al. Cardiovascular responses to dynamic exercise with acute anemia in humans. Am J Phys. 1997;273(4 Pt 2):H1787–93.

    CAS  Google Scholar 

  21. Stenberg J, Ekblom B, Messin R. Hemodynamic response to work at simulated altitude, 4,000 m. J Appl Physiol. 1966;21(5):1589–94.

    Article  PubMed  CAS  Google Scholar 

  22. Roach RC, et al. Arterial O2 content and tension in regulation of cardiac output and leg blood flow during exercise in humans. Am J Phys. 1999;276(2 Pt 2):H438–45.

    CAS  Google Scholar 

  23. Ekblom B, Wilson G, Astrand PO. Central circulation during exercise after venesection and reinfusion of red blood cells. J Appl Physiol. 1976;40(3):379–83.

    Article  PubMed  CAS  Google Scholar 

  24. Krip B, et al. Effect of alterations in blood volume on cardiac function during maximal exercise. Med Sci Sports Exerc. 1997;29(11):1469–76.

    Article  PubMed  CAS  Google Scholar 

  25. Torre-Bueno JR, et al. Diffusion limitation in normal humans during exercise at sea level and simulated altitude. J Appl Physiol. 1985;58(3):989–95.

    Article  PubMed  CAS  Google Scholar 

  26. Gledhill N, Froese AB, Dempsey JA. Ventilation to perfusion distribution during exercise in health. In: Dempsey JA, Reed CE, editors. Muscular exercise and the lung. Wisconsin: University of Wisconsin; 1977. p. 325–44.

    Google Scholar 

  27. Powers SK, et al. Effects of incomplete pulmonary gas exchange on VO2 max. J Appl Physiol. 1989;66(6):2491–5.

    Article  PubMed  CAS  Google Scholar 

  28. O’Donnell DE, Ofir D, Laveneziana P. Patterns of cardiopulmonary response to exercise in lung diseases. In:European respiratory monograph. United Kingdom: European Respiratory Society; 2007. p. 69–92.

    Google Scholar 

  29. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease. Circulation. 2003a;107(1):139–46.

    Article  PubMed  Google Scholar 

  30. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation. 2003b;107(2):346–54.

    Article  PubMed  Google Scholar 

  31. Marcinek DJ, et al. Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle. J Physiol. 2005;569(Pt 2):467–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. DeLorey DS, Paterson DH, Kowalchuk JM. Effects of ageing on muscle O2 utilization and muscle oxygenation during the transition to moderate-intensity exercise. Appl Physiol Nutr Metab. 2007;32(6):1251–62.

    Article  PubMed  Google Scholar 

  33. DeLorey DS, Babb TG. Progressive mechanical ventilatory constraints with aging. Am J Respir Crit Care Med. 1999;160(1):169–77.

    Article  PubMed  CAS  Google Scholar 

  34. Stathokostas L, et al. Longitudinal changes in aerobic power in older men and women. J Appl Physiol. 2004;97(2):781–9.

    Article  PubMed  Google Scholar 

  35. Coggan AR, et al. Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J Gerontol. 1992;47(3):B71–6.

    Article  PubMed  CAS  Google Scholar 

  36. Russell JA, et al. Effects of aging on capillary geometry and hemodynamics in rat spinotrapezius muscle. Am J Physiol Heart Circ Physiol. 2003;285(1):H251–8.

    Article  PubMed  CAS  Google Scholar 

  37. Taylor BJ, Johnson BD. The pulmonary circulation and exercise responses in the elderly. Semin Respir Crit Care Med. 2010;31(5):528–38.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Turner JM, Mead J, Wohl ME. Elasticity of human lungs in relation to age. J Appl Physiol. 1968;25(6):664–71.

    Article  PubMed  CAS  Google Scholar 

  39. Walsh J, et al. Structural change of the thorax in chronic obstructive pulmonary disease. J Appl Physiol. 1992;72:1270–8.

    Article  PubMed  CAS  Google Scholar 

  40. Tolep K, et al. Comparison of diaphragm strength between healthy adult elderly and young men. Am J Respir Crit Care Med. 1995;152(2):677–82.

    Article  PubMed  CAS  Google Scholar 

  41. Johnson BD, Badr MS, Dempsey JA. Impact of the aging pulmonary system on the response to exercise. Clin Chest Med. 1994;15(2):229–46.

    PubMed  CAS  Google Scholar 

  42. Johnson BD, et al. Flow limitation and regulation of functional residual capacity during exercise in a physically active aging population. Am Rev Respir Dis. 1991;143(5 Pt 1):960–7.

    Article  PubMed  CAS  Google Scholar 

  43. Johnson BD, et al. Mechanical constraints on exercise hyperpnea in a fit aging population. Am Rev Respir Dis. 1991;143(5 Pt 1):968–77.

    Article  PubMed  CAS  Google Scholar 

  44. Harms CA, et al. Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol. 1997;82(5):1573–83.

    Article  PubMed  CAS  Google Scholar 

  45. Aliverti A, et al. Human respiratory muscle actions and control during exercise. J Appl Physiol. 1997;83(4):1256–69.

    Article  PubMed  CAS  Google Scholar 

  46. Vogiatzis I, et al. Respiratory kinematics by optoelectronic plethysmography during exercise in men and women. Eur J Appl Physiol. 2005;93(5–6):581–7.

    Article  PubMed  Google Scholar 

  47. Vogiatzis I, et al. Chest wall volume regulation during exercise in COPD patients with GOLD stages II to IV. Eur Respir J. 2008;32(1):42–52.

    Article  PubMed  CAS  Google Scholar 

  48. Gallagher C. Exercise limitation and clinical exercise testing in chronic obstructive pulmonary disease. Clin Chest Med. 1994;15(2):305–26.

    PubMed  CAS  Google Scholar 

  49. American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–77.

    Article  Google Scholar 

  50. Harms CA. Does gender affect pulmonary function and exercise capacity? Respir Physiol Neurobiol. 2006;151(2–3):124–31.

    Article  PubMed  Google Scholar 

  51. Wasserman K, et al. Exercise testing and interpretation: an overview. In: Weinberg WR, editor. Principles of exercise testing and interpretation. Baltimore, PA: Lippincott Williams & Wilkins; 2005. p. 1–9.

    Google Scholar 

  52. Dillard TA, Piantadosi S, Rajagopal KR. Prediction of ventilation at maximal exercise in chronic airflow obstruction. Am Rev Respir Dis. 1985;132:230–5.

    PubMed  CAS  Google Scholar 

  53. Laveneziana P, Parker CM, O’Donnell DE. Ventilatory constraints and dyspnea during exercise in chronic obstructive pulmonary disease. Appl Physiol Nutr Metab. 2007;32(6):1225–38.

    Article  PubMed  Google Scholar 

  54. MacIntyre NR. Mechanisms of functional loss in patients with chronic lung disease. Respir Care. 2008;53(9):1177–84.

    PubMed  Google Scholar 

  55. Levison H, Cherniack RM. Ventilatory cost of exercise in chronic obstructive pulmonary disease. J Appl Physiol. 1968;25(1):21–7.

    Article  PubMed  CAS  Google Scholar 

  56. MacIntyre NR, Leatherman NE. Mechanical loads on the ventilatory muscles. A theoretical analysis. Am Rev Respir Dis. 1989;139(4):968–73.

    Article  PubMed  CAS  Google Scholar 

  57. Casaburi R, et al. Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease. Am Rev Respir Dis. 1991;143(1):9–18.

    Article  PubMed  CAS  Google Scholar 

  58. O’Donnell DE. Exercise limitation and clinical exercise testing in chronic obstructive pulmonary disease. In: Weisman I, Zeballos R, editors. Progress in respiratory research. Basel: Karger; 2002. p. 138–58.

    Google Scholar 

  59. West JB. State of the art: ventilation-perfusion relationships. Am Rev Respir Dis. 1977;116(5):919–43.

    PubMed  CAS  Google Scholar 

  60. Agusti A, Cotes J, Wagner P. Responses to exercise in lung diseases. In:European respiratory monograph. UK: ERS Journals; 1997. p. 32–50.

    Google Scholar 

  61. Hyatt RE. Expiratory flow limitation. J Appl Physiol. 1983;55(1 Pt 1):1–7.

    Article  PubMed  CAS  Google Scholar 

  62. Martinez FJ, et al. Lung-volume reduction improves dyspnea, dynamic hyperinflation, and respiratory muscle function. Am J Respir Crit Care Med. 1997;155(6):1984–90.

    Article  PubMed  CAS  Google Scholar 

  63. O’Donnell DE, Revill S, Webb K. Dynamic hyperinflation and exercise intolerance in COPD. Am J Respir Crit Care Med. 2001;164:770–7.

    Article  PubMed  Google Scholar 

  64. Ferrazza A, et al. Cardiopulmonary exercise testing in the functional and prognostic evaluation of patients with pulmonary diseases. Respiration. 2009;77:3–17.

    Article  PubMed  CAS  Google Scholar 

  65. Naeije R. Pulmonary hypertension and right heart failure in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(1):20–2.

    Article  PubMed  Google Scholar 

  66. Agusti AG, et al. Hypoxic pulmonary vasoconstriction and gas exchange during exercise in chronic obstructive pulmonary disease. Chest. 1990;97(2):268–75.

    Article  PubMed  CAS  Google Scholar 

  67. Agusti AG, et al. Mechanisms of gas-exchange impairment in idiopathic pulmonary fibrosis. Am Rev Respir Dis. 1991;143(2):219–25.

    Article  PubMed  CAS  Google Scholar 

  68. D’Alonzo GE, et al. Comparison of progressive exercise performance of normal subjects and patients with primary pulmonary hypertension. Chest. 1987;92(1):57–62.

    Article  PubMed  Google Scholar 

  69. Dantzker DR, D’Alonzo GE. The effect of exercise on pulmonary gas exchange in patients with severe chronic obstructive pulmonary disease. Am Rev Respir Dis. 1986;134(6):1135–9.

    PubMed  CAS  Google Scholar 

  70. Dantzker DR, et al. Pulmonary gas exchange during exercise in patients with chronic obliterative pulmonary hypertension. Am Rev Respir Dis. 1984;130(3):412–6.

    PubMed  CAS  Google Scholar 

  71. Janicki JS. Influence of the pericardium and ventricular interdependence on left ventricular diastolic and systolic function in patients with heart failure. Circulation. 1990;81(2 Suppl):III15–20.

    PubMed  CAS  Google Scholar 

  72. Dempsey JA, Harms CA, Ainsworth DM. Respiratory muscle perfusion and energetics during exercise. Med Sci Sports Exerc. 1996;28(9):1123–8.

    Article  PubMed  CAS  Google Scholar 

  73. Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med Sci Sports Exerc. 1996;153(3):976–80.

    Article  CAS  Google Scholar 

  74. Hamilton AL, et al. Muscle strength, symptom intensity, and exercise capacity in patients with cardiorespiratory disorders. Am J Respir Crit Care Med. 1995;152(6 Pt 1):2021–31.

    Article  PubMed  CAS  Google Scholar 

  75. Bernard S, et al. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;158(2):629–34.

    Article  PubMed  CAS  Google Scholar 

  76. Serres I, et al. Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest. 1998;113(4):900–5.

    Article  PubMed  CAS  Google Scholar 

  77. Booth F, Gollnick P. Effects of disease on the structure and function of skeletal muscle. Med Sci Sports Exerc. 1983;15(5):415–20.

    Article  PubMed  CAS  Google Scholar 

  78. Coyle EF, et al. Effects of detraining on responses to submaximal exercise. J Appl Physiol. 1985; 59(3):853–9.

    Article  PubMed  CAS  Google Scholar 

  79. Mainguy V, et al. Peripheral muscle dysfunction in idiopathic pulmonary arterial hypertension. Thorax. 2010;65(2):113–7.

    Article  PubMed  Google Scholar 

  80. Vogiatzis I, Zakynthinos S. Factors limiting exercise tolerance in chronic lung diseases. Compr Physiol. 2012;2(3):1779–817.

    PubMed  Google Scholar 

  81. Johnson B. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–77.

    Article  Google Scholar 

  82. Puente-Maestu L, et al. Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement. Eur Respir J. 2016;47(2):429–60.

    Article  PubMed  Google Scholar 

  83. Laviolette L, Laveneziana P. Dyspnoea: a multidimensional and multidisciplinary approach. Eur Respir J. 2014;43(6):1750–62.

    Article  PubMed  Google Scholar 

  84. Banzett RB, O’Donnell CR. Should we measure dyspnoea in everyone? Eur Respir J. 2014;43(6):1547–50.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gronseth R, et al. Predictors of dyspnoea prevalence: results from the BOLD study. Eur Respir J. 2014;43(6):1610–20.

    Article  PubMed  Google Scholar 

  86. Nishimura K, et al. Dyspnea is a better predictor of 5-year survival than airway obstruction in patients with COPD. Chest. 2002;121(5):1434–40.

    Article  PubMed  Google Scholar 

  87. Abidov A, et al. Prognostic significance of dyspnea in patients referred for cardiac stress testing. N Engl J Med. 2005;353(18):1889–98.

    Article  PubMed  CAS  Google Scholar 

  88. Ho SF, et al. Dyspnoea and quality of life in older people at home. Age Ageing. 2001;30(2):155–9.

    Article  PubMed  CAS  Google Scholar 

  89. Hayton C, et al. Barriers to pulmonary rehabilitation: characteristics that predict patient attendance and adherence. Respir Med. 2013;107(3):401–7.

    Article  PubMed  Google Scholar 

  90. Parshall MB, et al. An official American Thoracic Society statement: update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med. 2012;185(4):435–52.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Laveneziana P, et al. Evolution of dyspnea during exercise in chronic obstructive pulmonary disease: impact of critical volume constraints. Am J Respir Crit Care Med. 2011;184(12):1367–73.

    Article  PubMed  Google Scholar 

  92. Laveneziana P, et al. Does expiratory muscle activity influence dynamic hyperinflation and exertional dyspnea in COPD? Respir Physiol Neurobiol. 2014;199:24–33.

    Article  PubMed  Google Scholar 

  93. O’Donnell DE, Hamilton AL, Webb KA. Sensory-mechanical relationships during high-intensity, constant-work-rate exercise in COPD. J Appl Physiol. 2006;101(4):1025–35.

    Article  PubMed  Google Scholar 

  94. Guenette JA, Webb KA, O’Donnell DE. Does dynamic hyperinflation contribute to dyspnoea during exercise in patients with COPD? Eur Respir J. 2012;40(2):322–9.

    Article  PubMed  Google Scholar 

  95. Hudson AL, Laveneziana P. Do we “drive” dyspnoea? Eur Respir J. 2015;45(2):301–4.

    Article  PubMed  Google Scholar 

  96. Lanini B, et al. Perception of dyspnea in patients with neuromuscular disease. Chest. 2001;120(2):402–8.

    Article  PubMed  CAS  Google Scholar 

  97. O’Donnell DE, Chau LK, Webb KA. Qualitative aspects of exertional dyspnea in patients with interstitial lung disease. J Appl Physiol. 1998;84(6):2000–9.

    Article  PubMed  Google Scholar 

  98. O’Donnell DE, et al. Ventilatory assistance improves exercise endurance in stable congestive heart failure. Am J Respir Crit Care Med. 1999;160(6):1804–11.

    Article  PubMed  Google Scholar 

  99. Laveneziana P, et al. Effect of biventricular pacing on ventilatory and perceptual responses to exercise in patients with stable chronic heart failure. J Appl Physiol. 2009;106(5):1574–83.

    Article  PubMed  Google Scholar 

  100. Laveneziana P, et al. Dynamic respiratory mechanics and exertional dyspnoea in pulmonary arterial hypertension. Eur Respir J. 2013;41(3):578–87.

    Article  PubMed  CAS  Google Scholar 

  101. Laveneziana P, et al. Mechanisms of exertional dyspnoea in pulmonary veno-occlusive disease with EIF2AK4 mutations. Eur Respir J. 2014;44(4):1069–72.

    Article  PubMed  CAS  Google Scholar 

  102. Laveneziana P, et al. Inspiratory muscle function, dynamic hyperinflation and exertional dyspnoea in pulmonary arterial hypertension. Eur Respir J. 2015;45(5):1495–8.

    Article  PubMed  Google Scholar 

  103. DeLorey DS, Wyrick BL, Babb TG. Mild-to-moderate obesity: implications for respiratory mechanics at rest and during exercise in young men. Int J Obes. 2005;29(9):1039–47.

    Article  CAS  Google Scholar 

  104. Ofir D, et al. Ventilatory and perceptual responses to cycle exercise in obese women. J Appl Physiol. 2007;102(6):2217–26.

    Article  PubMed  Google Scholar 

  105. Romagnoli I, et al. Role of hyperinflation vs. deflation on dyspnoea in severely to extremely obese subjects. Acta Physiol (Oxford). 2008;193(4):393–402.

    Article  CAS  Google Scholar 

  106. Laveneziana P, et al. Tidal volume inflection and its sensory consequences during exercise in patients with stable asthma. Respir Physiol Neurobiol. 2012;185(2):374–9.

    Article  PubMed  Google Scholar 

  107. Laveneziana P, et al. Mechanisms of dyspnoea and its language in patients with asthma. Eur Respir J. 2006;27(4):742–7.

    Article  PubMed  CAS  Google Scholar 

  108. Lougheed MD, Fisher T, O’Donnell DE. Dynamic hyperinflation during bronchoconstriction in asthma: implications for symptom perception. Chest. 2006;130(4):1072–81.

    Article  PubMed  Google Scholar 

  109. Moy ML, et al. Quality of dyspnea in bronchoconstriction differs from external resistive loads. Am J Respir Crit Care Med. 2000;162(2 Pt 1):451–5.

    Article  PubMed  CAS  Google Scholar 

  110. Lougheed MD, et al. Breathlessness during acute bronchoconstriction in asthma. Pathophysiologic mechanisms. Am Rev Respir Dis. 1993;148(6 Pt 1):1452–9.

    Article  PubMed  CAS  Google Scholar 

  111. Ottanelli R, et al. Do inhaled corticosteroids affect perception of dyspnea during bronchoconstriction in asthma? Chest. 2001;120(3):770–7.

    Article  PubMed  CAS  Google Scholar 

  112. Ottanelli R, et al. Perception of bronchoconstriction and bronchial hyper-responsiveness in asthma. Clin Sci (Lond). 2000;98(6):681–7.

    Article  CAS  Google Scholar 

  113. Killian KJ, et al. Symptom perception during acute bronchoconstriction. Am J Respir Crit Care Med. 2000;162(2 Pt 1):490–6.

    Article  PubMed  CAS  Google Scholar 

  114. Gorini M, et al. Chest wall hyperinflation during acute bronchoconstriction in asthma. Am J Respir Crit Care Med. 1999;160(3):808–16.

    Article  PubMed  CAS  Google Scholar 

  115. Filippelli M, et al. Overall contribution of chest wall hyperinflation to breathlessness in asthma. Chest. 2003;124(6):2164–70.

    Article  PubMed  Google Scholar 

  116. Moy ML, et al. Language of dyspnea in assessment of patients with acute asthma treated with nebulized albuterol. Am J Respir Crit Care Med. 1998;158(3):749–53.

    Article  PubMed  CAS  Google Scholar 

  117. Barreiro E, et al. Dyspnoea at rest and at the end of different exercises in patients with near-fatal asthma. Eur Respir J. 2004;24(2):219–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierantonio Laveneziana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Vogiatzis, I., Palange, P., Laveneziana, P. (2018). Assessment of Exercise Capacity. In: Clini, E., Holland, A., Pitta, F., Troosters, T. (eds) Textbook of Pulmonary Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-319-65888-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65888-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65887-2

  • Online ISBN: 978-3-319-65888-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics