Skip to main content

Directed Unions of Local Quadratic Transforms of Regular Local Rings and Pullbacks

  • Chapter
  • First Online:
Rings, Polynomials, and Modules

Abstract

Let \(\{R_{n},\mathfrak{m}_{n}\}_{n\geq 0}\) be an infinite sequence of regular local rings with R n+1 birationally dominating R n and \(\mathfrak{m}_{n}R_{n+1}\) a principal ideal of R n+1 for each n. We examine properties of the integrally closed local domain \(S =\bigcup _{n\geq 0}R_{n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [21] and [22], the authors call S a Shannon extension of R. We have made a distinction here with monoidal transforms. Since dimR n ≥ 2, we have \(R_{n} \subsetneq R_{n+1}\) for each positive integer n and \(\bigcup _{n}R_{n}\) is an infinite ascending union.

  2. 2.

    If R n = R n+1 for some integer n, then \(R_{n} =\mathcal{ V }\) is a DVR and R n = R m for all mn.

  3. 3.

    Muhammad Zafrullah has shown us a different proof of Theorem 6.2, an outline of which is as follows. Observe that a Shannon extension S is a Schreier domain, i.e., S is an integrally closed domain such that if r | xy, then r = st where s | x and t | y. A finite conductor Schreier domain is a GCD domain by [32, Theorem 3.6]. By Theorem 2.2, \(\mathfrak{m}_{S}\) is the radical of a principal ideal, and so S is t-local [18, Proposition 1.1(5)]. In particular, \((((x,y)S)^{-1})^{-1} \subseteq \mathfrak{m}_{S}\) for all x, yS. If S is a GCD domain that is not a valuation domain, then there exist \(x,y \in \mathfrak{m}_{S}\) such that xSyS = xyS. However, this implies (((x, y)S)−1)−1 = S, a contradiction. Thus if S is a GCD domain, S is a valuation domain. These observations imply the theorem.

References

  1. Abhyankar, S.: On the valuations centered in a local domain. Am. J. Math. 78, 321–348 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abhyankar, S.: Desingularization of plane curves. AMS Proc. Symp. Pure Math. (I) 40, 1–45 (1983)

    Google Scholar 

  3. Abhyankar, S.: Resolution of Singularities of Embedded Algebraic Surfaces. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  4. Chase, S.: Direct products of modules. Trans. Am. Math. Soc. 97, 457–473 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chevalley, C.: La notion d’anneau de décomposition. Nagoya Math. J. 7, 21–33 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cutkosky, D.: Resolution of Singularities. Graduate Studies in Mathematics, vol. 63. American Mathematical Society, Providence, RI (2004)

    Google Scholar 

  7. Fontana, M.: Topologically defined classes of commutative rings. Ann. Mat. Pura Appl. (4) 123, 331–355 (1980)

    Google Scholar 

  8. Fontana, M., Huckaba, J., Papick, I.: Prüfer Domains. Marcel Dekker, New York (1997)

    MATH  Google Scholar 

  9. Gabelli, S., Houston, E.: Ideal theory in pullbacks. In: Chapman, S., Glaz, S. (eds.) Non-Noetherian Commutative Ring Theory. Kluwer, Dordrecht (2000)

    Google Scholar 

  10. Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York (1972)

    MATH  Google Scholar 

  11. Gilmer, R., Mott, J., Zafrullah, M.: t-invertibility and comparability. In: Cahen, P.-J., Costa, D., Fontana M., Kabbaj, S.-E. (eds.) Commutative Ring Theory, pp. 141–150. Marcel Dekker, New York (1994)

    Google Scholar 

  12. Glaz, S.: Finite conductor rings. Proc. Am. Math. Soc. 129(10), 2833–2843 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Granja, A.: Valuations determined by quadratic transforms of a regular ring. J. Algebra 280(2), 699–718 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Granja, A., Sánchez-Giralda, T.: Valuations, equimultiplicity and normal flatness. J. Pure Appl. Algebra 213(9), 1890–1900 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Granja, A., Martinez, M.C., Rodriguez, C.: Valuations dominating regular local rings and proximity relations. J. Pure Appl. Algebra 209(2), 371–382 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Greenberg, B.: Global dimension of cartesian squares. J. Algebra 32, 31–43 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hartshorne, R.: Algebraic Geometry. Springer, New York (1977)

    Book  MATH  Google Scholar 

  18. Hedstrom, J., Houston, E.: Some remarks on star operations. J. Pure Appl. Algebra 18, 37–44 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  19. Heinzer, W., Huneke, C., Sally, J.D.: A criterion for spots. J. Math. Kyoto Univ. 26(4), 667–671 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Heinzer, W., Kim, M.-K., Toeniskoetter, M.: Directed unions of local quadratic transforms of a regular local ring. arXiv:1512.03848

    Google Scholar 

  21. Heinzer, W., Loper, K.A., Olberding, B., Schoutens, H., Toeniskoetter, M.: Ideal theory of infinite directed unions of local quadratic transforms. J. Algebra 474, 213–239 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  22. Heinzer, W., Olberding, B., Toeniskoetter, M.: Asymptotic properties of infinite directed unions of local quadratic transforms. J. Algebra 479, 216–243 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kaplansky, I.: Commutative Rings. Allyn and Bacon, Boston (1970)

    MATH  Google Scholar 

  24. Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, Boston (1985)

    MATH  Google Scholar 

  25. Lipman, J.: On complete ideals in regular local rings. In: Algebraic Geometry and Commutative Algebra, vol. I, pp. 203–231. Kinokuniya, Tokyo (1988)

    Google Scholar 

  26. Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  27. McAdam, S.: Two conductor theorems. J. Algebra 23, 239–240 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nagata, M.: Local Rings. Wiley, New York (1962)

    MATH  Google Scholar 

  29. Olberding, B., Saydam, S.: Ultraproducts of commutative rings. In: Commutative Ring Theory and Applications (Fez, 2001), pp. 369–386. Lecture Notes in Pure and Appl. Math., vol. 231, Dekker, New York (2003)

    Google Scholar 

  30. Shannon, D.: Monoidal transforms of regular local rings. Am. J. Math. 95, 294–320 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  31. Vasconcelos, W.: The local rings of global dimension two. Proc. Am. Math. Soc. 35, 381–386 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zafrullah, M.: On a property of pre-Schreier domains. Commun. Algebra 15, 1895–1920 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zariski, O.: Reductions of the singularities of algebraic three dimensional varieties. Ann. Math. (2) 40, 639–689 (1939)

    Google Scholar 

  34. Zariski, O., Samuel, P.: Commutative Algebra. Vol. II. Reprint of the 1960 edition. Graduate Texts in Mathematics, vol. 29. Springer, New York/Heidelberg (1975)

    Google Scholar 

Download references

Acknowledgements

We thank Muhammad Zafrullah for helpful comments and for showing us Remark 2.6 and the different proof of Theorem 6.2 described in footnote 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Guerrieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guerrieri, L., Heinzer, W., Olberding, B., Toeniskoetter, M. (2017). Directed Unions of Local Quadratic Transforms of Regular Local Rings and Pullbacks. In: Fontana, M., Frisch, S., Glaz, S., Tartarone, F., Zanardo, P. (eds) Rings, Polynomials, and Modules. Springer, Cham. https://doi.org/10.1007/978-3-319-65874-2_13

Download citation

Publish with us

Policies and ethics