Coupling DG-FEM and BEM for a Time Harmonic Eddy Current Problem

  • Ana Alonso RodríguezEmail author
  • Salim Meddahi
  • Alberto Valli
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 119)


We introduce and analyze a discontinuous Galerkin FEM/BEM method for a time-harmonic eddy current problem written in terms of the magnetic field. We use standard finite elements on a partition of the conductor domain coupled with continuous boundary elements on the transmission interface. We prove quasi-optimal error estimates in the energy norm.



Partial support by the University of Trento, and Spain’s Ministry of Economy through Project MTM2013-43671-P.


  1. 1.
    A. Alonso Rodríguez, A. Valli, A FEM-BEM approach for electro-magnetostatics and time-harmonic eddy-current problems. Appl. Numer. Math. 59, 2036–2049 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    S. Außerhofer, O. Bíró, K. Preis, Discontinuous Galerkin formulation for eddy-current problems. COMPEL 28, 1081–1090 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44 (Springer, Heidelberg, 2013)Google Scholar
  4. 4.
    A. Bossavit, The computation of eddy-currents, in dimension 3, by using mixed finite elements and boundary elements in association. Math. Comput. Model. 15, 33–42 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    C. Carstensen, R.H.W. Hoppe, N. Sharma, T. Warburton, Adaptive hybridized interior penalty discontinuous Galerkin methods for H(curl)-elliptic problems. Numer. Math. Theory Methods Appl. 4, 13–37 (2011)zbMATHMathSciNetGoogle Scholar
  6. 6.
    B. Cockburn, F.-J. Sayas, The devising of symmetric couplings of boundary element and discontinuous Galerkin methods. IMA J. Numer. Anal. 32, 765–794 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    D.A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods of Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69 (Springer, Heidelberg, 2012)Google Scholar
  8. 8.
    G.N. Gatica, N. Heuer, F.-J. Sayas, A direct coupling of local discontinuous Galerkin and boundary element methods. Math. Comput. 79, 1369–1394 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    N. Heuer, S. Meddahi, F.-J. Sayas, Symmetric coupling of LDG-FEM and DG-BEM. J. Sci. Comput. 68, 303–325 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    R. Hiptmair, Symmetric coupling for eddy current problems. SIAM J. Numer. Anal. 40, 41–65 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    S. Meddahi, V. Selgas, A mixed-FEM and BEM coupling for a three-dimensional eddy current problem. M2AN Math. Model. Numer. Anal. 37, 291–318 (2003)Google Scholar
  12. 12.
    P. Monk, Finite Element Methods for Maxwell’s Equations (Oxford University Press, Oxford, 2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    J.-C. Nédélec, A new family of mixed finite elements in R 3. Numer. Math. 50, 57–81 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    I. Perugia, D. Schötzau, The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72, 1179–1214 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    S.A. Sauter, C. Schwab, Boundary Element Methods. Springer Series in Computational Mathematics, vol. 39 (Springer Berlin, 2011)Google Scholar
  16. 16.
    A. Zaghdani, C. Daveau, On the coupling of LDG-FEM and BEM methods for the three dimensional magnetostatic problem. Appl. Math. Comput. 217, 1791–1810 (2010)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ana Alonso Rodríguez
    • 1
    Email author
  • Salim Meddahi
    • 2
  • Alberto Valli
    • 1
  1. 1.Department of MathematicsUniversity of TrentoTrentoItaly
  2. 2.Departamento de Matemáticas, Facultad de CienciasUniversidad de OviedoOviedoSpain

Personalised recommendations