Advertisement

High Order Semi-Lagrangian Particle Methods

  • Georges-Henri CottetEmail author
  • Petros Koumoutsakos
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 119)

Abstract

Semi-lagrangian (or remeshed) particle methods are conservative particle methods where the particles are remeshed at each time-step. The numerical analysis of these methods show that their accuracy is governed by the regularity and moment properties of the remeshing kernel and that their stability is guaranteed by a lagrangian condition which does not rely on the grid size. Turbulent transport and more generally advection dominated flows are applications where these features make them appealing tools. The adaptivity of the method and its ability to capture fine scales at minimal cost can be further reinforced by remeshing particles on adapted grids, in particular through wavelet-based multi-resolution analysis.

References

  1. 1.
    C. Basdevant, M. Holschneider, V. Perrier, Methode des ondelettes mobiles. C. R. Acad. Sci. Paris I 310, 647–652 (1990)zbMATHGoogle Scholar
  2. 2.
    M. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 3, 484–512 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    M. Bergdorf, G.-H. Cottet, P. Koumoutsakos, Multilevel adaptive particle methods for convection-diffusion equations. SIAM Multiscale Model. Simul. 4, 328–357 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    M. Bergdorf, P. Koumoutsakos, A Lagrangian particle-wavelet method. SIAM Multiscale Model. Simul. 5(3), 980–995 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    A. Cohen, I. Daubechies, J.C. Feauveau, Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    G.-H. Cottet, A new approach for the analysis of vortex methods in 2 and 3 dimensions. Ann. Inst. Henri Poincaré 5, 227–285 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    G.-H. Cottet, P. Koumoutsakos, Vortex Methods (Cambridge University Press, Cambridge, 2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    G.-H. Cottet, P. Koumoutsakos, M. Ould-Salihi, Vortex methods with spatially varying cores. J. Comput. Phys. 162, 164–185 (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    G.-H. Cottet, B. Michaux, S. Ossia, G. Vanderlinden, A comparison of spectral and vortex methods in three-dimensional incompressible flows. J. Comput. Phys. 175, 702–712 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    G.-H. Cottet, J.-M. Etancelin, F. Perignon, C. Picard, High order Semi-Lagrangian particles for transport equations: numerical analysis and implementation issues. ESAIM: Math. Model. Numer. Anal. 48, 1029–1060 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    M. Gazzola, B. Hejazialhosseini, P. Koumoutsakos, Reinforcement learning and wavelet adapted vortex methods for simulations of self-propelled swimmers. SIAM J. Sci. Comput. 36, 622–639 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    R.A. Kerr, Planetary origins: a quickie birth of jupiters and saturns. Science 298, 1698–1689 (2002)CrossRefGoogle Scholar
  13. 13.
    P. Koumoutsakos, Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138, 821–857 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    P. Koumoutsakos, A. Leonard, High resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296, 1–38 (1995)CrossRefzbMATHGoogle Scholar
  15. 15.
    R. Krasny, Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65, 292–313 (1986)CrossRefzbMATHGoogle Scholar
  16. 16.
    J.-B. Lagaert, G. Balarac, G.-H. Cottet, Hybrid spectral particle method for the turbulent transport of a passive scalar. J. Comput. Phys. 260, 127–142 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    F. Lossaso, J.O. Talton, N. Kwatra, R. Fedkiw, Two-way coupled SPH and particle level set fluid dynamics. IEEE Trans. Vis. Comput. Graph. 14, 797–804 (2008)CrossRefGoogle Scholar
  18. 18.
    A. Magni, G.-H. Cottet, Accurate, non-oscillatory remeshing schemes for particle methods. J. Comput. Phys. 231(1), 152–172 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    J.E. Martin, E. Meiburg, Numerical investigation of three-dimensional evolving jets subject to axisymmetric and azimuthal perturbation. J. Fluid Mech. 230, 271 (1991)CrossRefzbMATHGoogle Scholar
  20. 20.
    J.J. Monaghan, Particle methods for hydrodynamics. Comput. Phys. Rep. 3, 71–124 (1985)CrossRefGoogle Scholar
  21. 21.
    P. Ploumhans, G.S. Winckelmans, J.K. Salmon, A. Leonard, M.S. Warren, Vortex methods for direct numerical simulation of three-dimensional bluff body flows: application to the sphere at Re = 300, 500, and 1000. J. Comput. Phys. 165, 354–406 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    D. Rossinelli, B. Hejazialhosseini, W. van Rees, M. Gazzola, M. Bergdorf, P. Koumoutsakos, MRAG-I2D: multi-resolution adapted grids for remeshed vortex methods on multicore architectures. J. Comput. Phys. 288, 1–18 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    J. Sethian, A. Ghoniem, Validation study of vortex methods. J. Comput. Phys. 54, 425–456 (1984)CrossRefGoogle Scholar
  24. 24.
    O. Vasilyev, Solving multi-dimensional evolution problems with localized structures using second generation wavelets. Int. J. Comput. Fluid Dyn. 17(2), 151–168, 17, 151–168 (2003)Google Scholar
  25. 25.
    G. Winckelmans, A. Leonard, Contributions to vortex methods for the computation of three dimensional incompressible unsteady flows. J. Comput. Phys. 109, 247–273 (1993)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University Grenoble Alpes and Institut Universitaire de FranceGrenobleFrance
  2. 2.ETH ZurichZurichSwitzerland

Personalised recommendations