Advertisement

A Perfect Absorbing Layer for High-Order Simulation of Wave Scattering Problems

  • Li-Lian WangEmail author
  • Zhiguo Yang
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 119)

Abstract

We report a novel approach to design artificial absorbing layers for spectral-element discretisation of wave scattering problems with bounded scatterers. It is essentially built upon two techniques: (i) a complex compression coordinate transformation that compresses all outgoing waves in the open space into the artificial layer, and then forces them to be attenuated and decay exponentially; (ii) a substitution (for the unknown) that removes the singularity induced by the transformation, and diminishes the oscillations near the inner boundary of the layer. As a result, the solution in the absorbing layer has no oscillation and is well-behaved for arbitrary high wavenumber and very thin layer. It is therefore well-suited and perfect for high-order simulations of scattering problems.

Notes

Acknowledgements

The authors thank Dr. Bo Wang from Hunan Normal University, China, for discussions at the early stage of this topic. L. Wang would like to thank the Scientific Committee and local organizers of ICOSAHOM 2016 for the conference invitation to Rio de Janeiro, Brazil. The work of two authors was partially supported by Singapore MOE AcRF Tier 1 Grant (RG 27/15) and MOE AcRF Tier 2 Grant (MOE 2013-T2-1-095, ARC 44/13).

References

  1. 1.
    M. Abramowitz, I.A. Stegun, (eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. A Wiley-Interscience Publication (John Wiley & Sons Inc., New York, 1984). Reprint of the 1972 edition, Selected Government Publications.Google Scholar
  2. 2.
    D. Appelö, T. Colonius, A high-order super-grid-scale absorbing layer and its application to linear hyperbolic systems. J. Comput. Phys. 228(11), 4200–4217 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    A. Bermúdez, L. Hervella-Nieto, A. Prieto, R. Rodríguez, An exact bounded perfectly matched layer for time-harmonic scattering problems. SIAM J. Sci. Comput. 30(1), 312–338 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    A. Bermúdez, L. Hervella-Nieto, A. Prieto, R. Rodríguez, An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. J. Comput. Phys. 223(2), 469–488 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd en. (Dover Publications, Mineola, 2001)zbMATHGoogle Scholar
  7. 7.
    Z.M. Chen, X.Z. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer. Anal. 43(2), 645–671 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Z.M. Chen, X.M. Wu, Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems. SIAM J. Numer. Anal. 50(5), 2632–2655 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    W.C. Chew, W.H. Weedon, A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw. Opt. Technol. Lett. 7(13), 599–604 (1994)CrossRefGoogle Scholar
  10. 10.
    F. Collino, P. Monk, The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19(6), 2061–2090 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    L. Demkowicz, J. Shen, A few new (?) facts about infinite elements. Comput. Methods Appl. Mech. Eng. 195(29–32), 3572–3590 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, in Acta Numerica, 1999, vol. 8 (Cambridge University Press, Cambridge, 1999), pp. 47–106zbMATHGoogle Scholar
  13. 13.
    S. Johnson, Notes on perfectly matched layers. Technical Report, Massachusetts Institute of Technology, Cambridge, MA (2010)Google Scholar
  14. 14.
    J. Shen, T. Tang, L.L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, vol. 41 (Springer, Berlin, 2011)Google Scholar
  15. 15.
    L.L. Wang, B. Wang, X.D. Zhao, Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions. SIAM J. Appl. Math. 72(6), 1869–1898 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Z.G. Yang, L.L. Wang, Z.J. Rong, B. Wang, B.L. Zhang, Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics. Comput. Methods Appl. Mech. Eng. 301, 137–163 (2016)CrossRefMathSciNetGoogle Scholar
  17. 17.
    A. Zenginoğlu, Hyperboloidal layers for hyperbolic equations on unbounded domains. J. Comput. Phys. 230(6), 2286–2302 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    N.A. Zharova, L.V. Shadrivov, Y.S. Kivshar, Inside-out electromagnetic cloaking. Opt. Express 16(7), 4615–4620 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Division of Mathematical SciencesSchool of Physical and Mathematical Sciences, Nanyang Technological UniversitySingaporeSingapore
  2. 2.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations