Skip to main content

A Perfect Absorbing Layer for High-Order Simulation of Wave Scattering Problems

  • Conference paper
  • First Online:
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 119))

  • 1134 Accesses

Abstract

We report a novel approach to design artificial absorbing layers for spectral-element discretisation of wave scattering problems with bounded scatterers. It is essentially built upon two techniques: (i) a complex compression coordinate transformation that compresses all outgoing waves in the open space into the artificial layer, and then forces them to be attenuated and decay exponentially; (ii) a substitution (for the unknown) that removes the singularity induced by the transformation, and diminishes the oscillations near the inner boundary of the layer. As a result, the solution in the absorbing layer has no oscillation and is well-behaved for arbitrary high wavenumber and very thin layer. It is therefore well-suited and perfect for high-order simulations of scattering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abramowitz, I.A. Stegun, (eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. A Wiley-Interscience Publication (John Wiley & Sons Inc., New York, 1984). Reprint of the 1972 edition, Selected Government Publications.

    Google Scholar 

  2. D. Appelö, T. Colonius, A high-order super-grid-scale absorbing layer and its application to linear hyperbolic systems. J. Comput. Phys. 228(11), 4200–4217 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Bermúdez, L. Hervella-Nieto, A. Prieto, R. Rodríguez, An exact bounded perfectly matched layer for time-harmonic scattering problems. SIAM J. Sci. Comput. 30(1), 312–338 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Bermúdez, L. Hervella-Nieto, A. Prieto, R. Rodríguez, An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. J. Comput. Phys. 223(2), 469–488 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd en. (Dover Publications, Mineola, 2001)

    MATH  Google Scholar 

  7. Z.M. Chen, X.Z. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer. Anal. 43(2), 645–671 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Z.M. Chen, X.M. Wu, Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems. SIAM J. Numer. Anal. 50(5), 2632–2655 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. W.C. Chew, W.H. Weedon, A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw. Opt. Technol. Lett. 7(13), 599–604 (1994)

    Article  Google Scholar 

  10. F. Collino, P. Monk, The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19(6), 2061–2090 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Demkowicz, J. Shen, A few new (?) facts about infinite elements. Comput. Methods Appl. Mech. Eng. 195(29–32), 3572–3590 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, in Acta Numerica, 1999, vol. 8 (Cambridge University Press, Cambridge, 1999), pp. 47–106

    MATH  Google Scholar 

  13. S. Johnson, Notes on perfectly matched layers. Technical Report, Massachusetts Institute of Technology, Cambridge, MA (2010)

    Google Scholar 

  14. J. Shen, T. Tang, L.L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, vol. 41 (Springer, Berlin, 2011)

    Google Scholar 

  15. L.L. Wang, B. Wang, X.D. Zhao, Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions. SIAM J. Appl. Math. 72(6), 1869–1898 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Z.G. Yang, L.L. Wang, Z.J. Rong, B. Wang, B.L. Zhang, Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics. Comput. Methods Appl. Mech. Eng. 301, 137–163 (2016)

    Article  MathSciNet  Google Scholar 

  17. A. Zenginoğlu, Hyperboloidal layers for hyperbolic equations on unbounded domains. J. Comput. Phys. 230(6), 2286–2302 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. N.A. Zharova, L.V. Shadrivov, Y.S. Kivshar, Inside-out electromagnetic cloaking. Opt. Express 16(7), 4615–4620 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Bo Wang from Hunan Normal University, China, for discussions at the early stage of this topic. L. Wang would like to thank the Scientific Committee and local organizers of ICOSAHOM 2016 for the conference invitation to Rio de Janeiro, Brazil. The work of two authors was partially supported by Singapore MOE AcRF Tier 1 Grant (RG 27/15) and MOE AcRF Tier 2 Grant (MOE 2013-T2-1-095, ARC 44/13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Lian Wang .

Editor information

Editors and Affiliations

Appendices

Appendix 1. Proof of Theorem 1

Proof

Given the transformation (14), (8) becomes

$$\displaystyle{ \mathbf{J} = \frac{\partial (x,y)} {\partial (\tilde{x},\tilde{y})} = \frac{\partial (x,y)} {\partial (r,\theta )} \frac{\partial (r,\theta )} {\partial (\tilde{\rho },\theta )} \frac{\partial (\tilde{\rho },\theta )} {\partial (\tilde{x},\tilde{y})}. }$$
(54)

With \(\tilde{\rho }\) in place of ρ in (9)– (10), we have

$$\displaystyle{ \mathbf{J} = \mathbf{R}\,\mathbf{J}_{\!1}\mathbf{R}^{t}\quad \mathrm{with}\;\;\;\mathbf{J}_{\! 1} = \left [\begin{array}{*{10}c} dr/d\tilde{\rho }& 0 \\ 0 &r/\tilde{\rho } \end{array} \right ], }$$
(55)

and

$$\displaystyle{ \mathbf{C} = \mathbf{R}\left [\begin{array}{*{10}c} c& 0\\ 0 &1/c \end{array} \right ]\mathbf{R}^{t},\quad n = \frac{\tilde{\rho }} {r} \frac{d\tilde{\rho }} {dr} =\alpha \beta \frac{\rho } {r} \frac{d\rho } {dr},\quad c:= \frac{\tilde{\rho }} {r} \frac{dr} {d\tilde{\rho }} = \frac{\beta } {\alpha } \frac{\rho } {r} \frac{dr} {d\rho }. }$$
(56)

Then we can work out the explicit expressions of n, c in (18) as (13).

Note that the asymptotic boundary condition at r = b is transformed from the Sommerfeld radiation condition in (1b).

We now derive the estimate (19). For this purpose, we expand the solution and data in Fourier series:

$$\displaystyle{ \{u,\varPsi \}=\sum _{ \vert m\vert =0}^{\infty }\{\hat{u}_{ m}(r),\hat{\psi }_{m}(r)\}e^{\mathrm{i}m\theta }, }$$
(57)

where \(\big\{\hat{u}_{m}(r),\hat{\psi }_{m}(r)\big\}\) are the Fourier coefficients. Then we can reduce the problem (16)– (17) to

$$\displaystyle{ \frac{1} {r}\big(rc\,\hat{u}_{m}^{{\prime}}\big)' -\frac{m^{2}} {r^{2}c}\hat{u}_{m} + k^{2}n\;\hat{u}_{ m} = 0,\;\;\;r \in [a,b),\;\;\vert m\vert = 0,1,2,\cdots \,, }$$
(58)
$$\displaystyle{ \hat{u}_{m} =\hat{\psi } _{m}\;\;\mathrm{at}\;\;r = a;\quad \frac{1} {\alpha } \frac{dr} {d\rho } \hat{u}_{m}^{{\prime}}-\mathrm{ i}ku = o(\vert \tilde{\rho }\vert ^{-1/2})\;\;\mathrm{as}\;\;r \rightarrow b^{-}. }$$
(59)

One can verify by using the Bessel equation of Hankel function (cf. [1]):

$$\displaystyle{r^{2}y'' + ry' + (r^{2} - m^{2})y = 0,\quad y = H_{ m}^{(1)}(r),}$$

that the unique solution of (16)– (17) is

$$\displaystyle{ u =\sum _{ \vert m\vert =0}^{\infty }\hat{u}_{ m}(r)e^{\mathrm{i}m\theta }\;\;\mathrm{with}\;\;\hat{u}_{ m}(r) =\hat{\psi } _{m} \frac{H_{m}^{(1)}(k\tilde{\rho })} {H_{m}^{(1)}(ka)}. }$$
(60)

We next resort to a uniform estimate of Hankel functions first derived in [7, Lemma 2.2]: For any complex z with Re(z), Im(z) ≥ 0, and for any real Θ such that 0 < Θ ≤ | z |, we have for any real order ν, 

$$\displaystyle{ \vert H_{\nu }^{(1)}(z)\vert \leq e^{-\mathrm{Im}(z)\big(1- \frac{\varTheta ^{2}} {\vert z\vert ^{2}} \big)^{1/2} }\vert H_{\nu }^{(1)}(\varTheta )\vert, }$$
(61)

which implies

$$\displaystyle{ \max _{\vert m\vert \geq 0}\bigg\vert \frac{H_{m}^{(1)}(k\tilde{\rho })} {H_{m}^{(1)}(ka)}\bigg\vert \leq \mathrm{ exp}\Big\{-k\sigma _{0}(\rho -a)\Big(1 - \frac{a^{2}} {k^{2}\rho ^{2} + k^{2}\sigma _{0}^{2}(\rho -a)^{2}}\Big)^{1/2}\Big\},\;\;\rho> a. }$$
(62)

Therefore, we can derive (19) by using the Parseval’s identity of Fourier series and (62). □

Appendix 2. Proof of Theorem 2

Proof

We first deal with the boundary term \(\langle \mathbf{C}\nabla u \cdot \mathbf{n},\phi \rangle _{\varGamma _{\!b}}\) in (24). By a direct calculation and (56), we have

$$\displaystyle{ (\partial _{r}u,r^{-1}\partial _{\theta }u)^{t} = \mathbf{R}^{t}\nabla u,\quad \mathbf{C}\nabla u \cdot \mathbf{n} = \mathbf{R}\,\mathrm{diag}(c,c^{-1})\,\mathbf{R}^{t}\,\nabla u \cdot \mathbf{n} = c\,\partial _{ r}u. }$$
(63)

Thus, using (56) and the substitutions: ϕ = and u = wv, we can write

$$\displaystyle{ \begin{array}{rl} &\langle \mathbf{C}\nabla u \cdot \mathbf{n},\phi \rangle _{\varGamma _{\!b}} =\langle cu_{r},\phi \rangle _{\varGamma _{\!b}} =\langle c\bar{w}u_{r},\psi \rangle _{\varGamma _{\!b}} = a^{3/2}\bigg\langle \frac{\beta } {r}\sqrt{\frac{b-r} {s(r)}}e^{-\mathrm{i}k(\rho -a)}\frac{1} {\alpha } \frac{dr} {d\rho } u_{r},\psi \bigg\rangle _{\varGamma _{\!b}} \\ & = a^{3/2}\bigg\langle \frac{\beta } {r}\sqrt{\frac{b-r} {s(r)}}e^{-\mathrm{i}k(\rho -a)}\Big(\frac{1} {\alpha } \frac{dr} {d\rho } u_{r} -\mathrm{ i}ku\Big),\psi \bigg\rangle _{\varGamma _{\!b}} +\mathrm{ i}ka^{3/2}\bigg\langle \frac{\beta } {r}\sqrt{\frac{b-r} {s(r)}}e^{-\mathrm{i}k(\rho -a)}u,\psi \bigg\rangle _{\varGamma _{\! b}} \\ & = a^{3/2}\bigg\langle \frac{\beta } {r}\sqrt{\frac{b-r} {s(r)}}e^{-\mathrm{i}k(\rho -a)}\Big(\frac{1} {\alpha } \frac{dr} {d\rho } u_{r} -\mathrm{ i}ku\Big),\psi \bigg\rangle _{\varGamma _{\!b}} +\mathrm{ i}ka^{3}\bigg\langle \frac{\beta } {r} \frac{(b-r)^{2}} {s^{2}(r)} v,\psi \bigg\rangle _{\varGamma _{\!b}}. \end{array} }$$

Noting that the integral along Γ b is in θ, we obtain from the transformed Sommerfeld radiation condition (17) that \(\langle \mathbf{C}\nabla u \cdot \mathbf{n},\phi \rangle _{\varGamma _{\!b}} \rightarrow 0\) as rb . 

We next deal with the other two terms in (24). Using the basic differentiation rules

$$\displaystyle{ \nabla u = w\,\nabla v + v\,\nabla w,\quad \nabla \bar{\phi } =\bar{ w}\,\nabla \bar{\psi } +\bar{\psi }\, \nabla \bar{w}, }$$

we derive from (24) and a direct calculation that

$$\displaystyle{ \begin{array}{rl} \mathbb{B}_{_{\varOmega _{\mathrm{ ab}}}}(u,\phi ) =&\big(\vert w\vert ^{2}\mathbf{C}\nabla v,\nabla \psi \big)_{\varOmega _{\mathrm{ ab}}} +\big (w\,\mathbf{C}\nabla v \cdot \nabla \bar{w},\psi \big)_{\varOmega _{\mathrm{ab}}} +\big (v\,\bar{w}\mathbf{C}\,\nabla w,\nabla \psi \big)_{\varOmega _{\mathrm{ab}}} \\ & +\big (\mathbf{C}\,\nabla w \cdot \nabla \bar{w}\,v,\psi \big)_{\varOmega _{\mathrm{ab}}} - k^{2}\big(\vert w\vert ^{2}\,n\,v,\psi \big)_{\varOmega _{\mathrm{ab}}}.\end{array} }$$
(64)

As C is symmetric, one verifies readily that for any vectors a and b with two components, we have (Ca) ⋅ b = (Cb) ⋅ a. Thus, we can rewrite

$$\displaystyle{ \begin{array}{rl} &\big(w\,\mathbf{C}\nabla v \cdot \nabla \bar{w},\psi \big)_{\varOmega _{\mathrm{ab}}} =\big (w\,\mathbf{C}\nabla \bar{w} \cdot \nabla v,\psi \big)_{\varOmega _{\mathrm{ab}}}. \end{array} }$$
(65)

As w is independent of θ, we immediately get \(\nabla w = \frac{dw} {dr} \mathbf{n}.\) Then by (56),

$$\displaystyle{ \mathbf{C}\nabla w = \frac{dw} {dr} \mathbf{R}\,\mathrm{diag}(c,c^{-1})\,\mathbf{R}^{t}\,\mathbf{n} = c\frac{dw} {dr} \mathbf{n}. }$$
(66)

Thus, we have

$$\displaystyle{ w\mathbf{C}\nabla \bar{w} = c\,w\frac{d\bar{w}} {dr} \mathbf{n},\quad \bar{w}\mathbf{C}\nabla w = c\,\bar{w}\frac{dw} {dr} \mathbf{n},\quad \mathbf{C}\,\nabla w \cdot \nabla \bar{w} = c\Big\vert \frac{dw} {dr} \Big\vert ^{2}. }$$
(67)

Introducing

$$\displaystyle{ \varpi _{1} = \vert w\vert ^{2},\quad \varpi _{ 2} = c\,\bar{w}\frac{\alpha } {\beta } \frac{dw} {dr},\quad \varpi _{3} = c\Big\vert \frac{dw} {dr} \Big\vert ^{2} - k^{2}\vert w\vert ^{2}n,\quad \partial _{\mathbf{ n}} = \mathbf{n} \cdot \nabla, }$$
(68)

we can derive (25) from (64)– (65) and (67)– (68). By (20),

$$\displaystyle{ \frac{dw} {dr} = w \frac{d\rho } {dr}\Big(-\frac{3} {2\rho } +\mathrm{ i}k\Big). }$$
(69)

We can work out {ϖ j } j = 1 3 by using (12), (56) and (69). □

Appendix 3. Proof of Theorem 3

Proof

We take v = ψ in (25). By (56) and (63), we have

$$\displaystyle{ \begin{array}{rl} &\mathrm{Re}\big(\varpi _{1}\mathbf{C}\nabla v,\nabla v\big)_{\varOmega _{\mathrm{ab}}} =\mathrm{ Re}\int _{0}^{2\pi }\!\!\!\!\int _{a}^{b}\Big\{c\vert v_{r}\vert ^{2} + \frac{1} {cr^{2}} \vert v_{\theta }\vert ^{2}\Big\}\varpi _{1}\,rdrd\theta \\ &\qquad =\int _{ 0}^{2\pi }\!\!\!\!\int _{a}^{b}\Big\{\mathrm{Re}\Big(\frac{\beta }{\alpha }\Big)\frac{a^{3}} {r\rho ^{2}} \frac{dr} {d\rho } \Big\}\vert v_{r}\vert ^{2}rdrd\theta +\int _{ 0}^{2\pi }\!\!\!\!\int _{ a}^{b}\Big\{\mathrm{Re}\Big(\frac{\alpha }{\beta }\Big)\frac{a^{3}} {r\rho ^{4}} \frac{d\rho } {dr}\Big\}\vert v_{\theta }\vert ^{2}rdrd\theta. \end{array} }$$
(70)

Using (26) and integration by parts leads to

$$\displaystyle{ \begin{array}{rl} &\mathrm{Re}\Big\{\frac{1} {\alpha } \big(\beta D_{\mathbf{n}}v,v\varpi _{2}\big)_{\varOmega _{\mathrm{ab}}} + \frac{1} {\alpha } \big(\beta v\varpi _{2},D_{\mathbf{n}}v\big)_{\varOmega _{\mathrm{ab}}}\Big\} = 2\int _{0}^{2\pi }\!\!\!\!\int _{a}^{b}\!\mathrm{Re}\Big(\frac{\beta }{\alpha }\Big)\,\mathrm{Re}(\varpi _{2}v\bar{v}_{r})rdrd\theta \\ & =\int _{ 0}^{2\pi }\!\!\!\!\int _{a}^{b}\mathrm{Re}\Big(\frac{\beta }{\alpha }\Big)\,\mathrm{Re}(\varpi _{2})(\partial _{r}\vert v\vert ^{2})rdrd\theta - 2\int _{0}^{2\pi }\!\!\!\!\int _{a}^{b}\mathrm{Re}\Big(\frac{\beta }{\alpha }\Big)\,\mathrm{Im}(\varpi _{2})\mathrm{Im}(v\bar{v}_{r})rdrd\theta \\ & = \frac{3} {2} \frac{1} {1+\sigma _{0}^{2}} \|v(a,\cdot )\|_{L^{2}(0,2\pi )}^{2} + \frac{3} {2}\int _{0}^{2\pi }\!\!\!\!\int _{ a}^{b}\Big\{\frac{a^{3}} {r\rho ^{4}} \Big( \frac{4\sigma _{0}^{2}} {1+\sigma _{0}^{2}} \frac{a} {\rho } - 3\Big) \frac{d\rho } {dr}\Big\}\vert v\vert ^{2}rdrd\theta \\ &\quad - 2k\int _{0}^{2\pi }\!\!\!\!\int _{a}^{b}\mathrm{Re}\Big(\frac{\beta }{\alpha }\Big)\frac{a^{3}} {\rho ^{2}} \mathrm{Im}(v\bar{v}_{r})drd\theta.\end{array} }$$
(71)

It is evident that

$$\displaystyle{ \mathrm{Re}\big(\varpi _{3}v,v\big)_{\varOmega _{\mathrm{ab}}} =\int _{ 0}^{2\pi }\!\!\!\!\int _{ a}^{b}\mathrm{Re}(\varpi _{ 3})\vert v\vert ^{2}rdrd\theta. }$$
(72)

Note from (15) that

$$\displaystyle{ \mathrm{Re}\Big(\frac{\beta } {\alpha }\Big) = 1 - \frac{\sigma _{0}^{2}} {1 +\sigma _{ 0}^{2}} \frac{a} {\rho }> \frac{1} {1 +\sigma _{ 0}^{2}},\quad \mathrm{Re}\Big(\frac{\alpha } {\beta }\Big) = 1 + \frac{\sigma _{0}(1 - a/\rho )} {1 +\sigma _{ 0}^{2}(1 - a/\rho )^{2}} \frac{a} {\rho }> 1. }$$
(73)

Using the Cauchy-Schwarz inequality, we obtain

$$\displaystyle{ \begin{array}{rl} 2k\int _{0}^{2\pi }\!\!\!\!\int _{a}^{b}\mathrm{Re}\Big(\frac{\beta }{\alpha }\Big)\frac{a^{3}} {\rho ^{2}} \mathrm{Im}(v\bar{v}_{r})drd\theta & \leq \frac{1} {\epsilon } \int _{0}^{2\pi }\!\!\!\!\int _{ a}^{b}\Big\{\mathrm{Re}\Big(\frac{\beta }{\alpha }\Big)\frac{a^{3}} {r\rho ^{2}} \frac{dr} {d\rho } \Big\}\vert v_{r}\vert ^{2}rdrd\theta \\ & +\epsilon k^{2}\int _{0}^{2\pi }\!\!\!\!\int _{a}^{b}\Big\{\mathrm{Re}\Big(\frac{\beta }{\alpha }\Big)\frac{a^{3}} {r\rho ^{2}} \frac{d\rho } {dr}\Big\}\vert v\vert ^{2}rdrd\theta,\end{array} }$$
(74)

where ε is a positive constant independent of k. Thus, by (25), (70)– (74) and collecting the terms, we obtain

$$\displaystyle{ \begin{array}{rl} \mathrm{Re}\big\{&\mathbb{B}_{\varOmega _{\mathrm{ab}}}(u,u)\big\} \geq \Big (1 -\frac{1} {\epsilon } \Big)\int _{0}^{2\pi }\!\!\!\!\int _{ a}^{b}\Big\{\mathrm{Re}\Big(\frac{\beta }{\alpha }\Big)\frac{a^{3}} {r\rho ^{2}} \frac{dr} {d\rho } \Big\}\vert v_{r}\vert ^{2}rdrd\theta \\ & +\int _{ 0}^{2\pi }\!\!\!\!\int _{a}^{b}\Big\{\mathrm{Re}\Big(\frac{\alpha }{\beta }\Big)\frac{a^{3}} {r\rho ^{4}} \frac{d\rho } {dr}\Big\}\vert v_{\theta }\vert ^{2}rdrd\theta + \frac{3} {2} \frac{1} {1+\sigma _{0}^{2}} \|v(a,\cdot )\|_{L^{2}(0,2\pi )}^{2} \\ & +\int _{ 0}^{2\pi }\!\!\!\!\int _{a}^{b}\bigg\{\mathrm{Re}(\varpi _{3}) +\bigg (\frac{3} {2} \frac{1} {\rho ^{2}} \Big( \frac{4\sigma _{0}^{2}} {1+\sigma _{0}^{2}} \frac{a} {\rho } - 3\Big) -\epsilon k^{2}\mathrm{Re}\Big(\frac{\beta }{\alpha }\Big)\bigg)\frac{a^{3}} {r\rho ^{2}} \frac{d\rho } {dr}\bigg\}\vert v\vert ^{2}rdrd\theta. \end{array} }$$
(75)

We next work out and estimate the functions in the brackets. We have

$$\displaystyle{ s(r) = a^{2} + r(b - 2a) \leq \vert I\vert \bar{c},\;\;\;\bar{c}:=\mathrm{ max}\{a,\vert I\vert \},\;\;\vert I\vert:= b - a. }$$
(76)

By (12), (26) and (76),

$$\displaystyle{ \frac{a^{3}} {r\rho ^{2}} \frac{dr} {d\rho } = \frac{a^{3}} {\vert I\vert ^{2}} \frac{(b - r)^{4}} {rs^{2}(r)} \geq \frac{a^{3}} {b\,\bar{c}^{2}\vert I\vert ^{4}}(b-r)^{4};\;\; \frac{a^{3}} {r\rho ^{4}} \frac{d\rho } {dr} = \frac{a^{3}\vert I\vert ^{2}} {r} \frac{(b - r)^{2}} {s^{4}(r)} \geq \frac{a^{3}} {b\,\bar{c}^{4}\vert I\vert ^{2}}(b-r)^{2}, }$$
(77)

so we can obtain the lower bounds of the first two terms.

With a careful calculation, we can work out the summation in the curly brackets of the last term in (75) by using (12), (15) and (26). □

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, LL., Yang, Z. (2017). A Perfect Absorbing Layer for High-Order Simulation of Wave Scattering Problems. In: Bittencourt, M., Dumont, N., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Lecture Notes in Computational Science and Engineering, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-65870-4_5

Download citation

Publish with us

Policies and ethics