A Staggered Discontinuous Galerkin Method for a Class of Nonlinear Elliptic Equations

  • Eric T. ChungEmail author
  • Ming Fai Lam
  • Chi Yeung Lam
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 119)


In this paper, we present a staggered discontinuous Galerkin (SDG) method for a class of nonlinear elliptic equations in two dimensions. The SDG methods have some distinctive advantages, including local and global conservations, and optimal convergence. So the SDG methods have been successfully applied to a wide range of problems including Maxwell equations, acoustic wave equation, elastodynamics and incompressible Navier-Stokes equations. Among many advantages of the SDG methods, one can apply a local post-processing technique to the solution, and obtain superconvergence. We will analyze the stability of the method and derive a priori error estimates. We solve the resulting nonlinear system using the Newton’s method, and the numerical results confirm the theoretical rates of convergence and superconvergence.


staggered discontinuous Galerkin method nonlinear elliptic equation 



The research of Eric Chung is partially supported by Hong Kong RGC General Research Fund (Project: 14301314).


  1. 1.
    S.C. Brenner, Poincaré–Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    R. Bustinza, G.N. Gatica, A local discontinuous Galerkin method for nonlinear diffusion problems with mixed boundary conditions. SIAM J. Sci. Comput. 26(1), 152–177 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    S.W. Cheung, E. Chung, H.H. Kim, Y. Qian, Staggered discontinuous Galerkin methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 302, 251–266 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    E.T. Chung, B. Engquist, Optimal discontinuous Galerkin methods for wave propagation. SIAM J. Numer. Anal. 44(5), 2131–2158 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    E.T. Chung, B. Engquist, Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47(5), 3820–3848 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    E.T. Chung, C.S. Lee, A staggered discontinuous Galerkin method for the curl–curl operator. IMA J. Numer. Anal. 32, 1241–1265 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    E.T. Chung, P. Ciarlet, T.F. Yu, Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell’s equations on Cartesian grids. J. Comput. Phys. 235, 14–31 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    E. Chung, B. Cockburn, G. Fu, The staggered DG method is the limit of a hybridizable DG method. SIAM J. Numer. Anal. 52(2), 915–932 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    E.T. Chung, C.Y. Lam, J. Qian, A staggered discontinuous Galerkin method for the simulation of seismic waves with surface topography. Geophysics 80(4), T119–T135 (2015)CrossRefGoogle Scholar
  10. 10.
    E. Chung, B. Cockburn, G. Fu, The staggered DG method is the limit of a hybridizable DG method. Part II: the Stokes flow. J. Sci. Comput. 66(2), 870–887 (2016)zbMATHGoogle Scholar
  11. 11.
    B. Cockburn, J. Guzmán, H. Wang, Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78(265), 1–24 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    M. Feistauer, On the finite element approximation of a cascade flow problem. Numer. Math. 50(6), 655–684 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    B. Heise, Analysis of a fully discrete finite element method for a nonlinear magnetic field problem. SIAM J. Numer. Anal. 31(3), 745–759 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    L. Hu, G.-W. Wei, Nonlinear poisson equation for heterogeneous media. Biophys. J. 103(4), 758–766 (2012)CrossRefGoogle Scholar
  15. 15.
    J.J. Lee, H.H. Kim, Analysis of a staggered discontinuous Galerkin method for linear elasticity. J. Sci. Comput. 66(2), 625–649 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    J. Nečas, Introduction to the Theory of Nonlinear Elliptic Equations, vol. 52 (Teubner, Leipzig, 1983)zbMATHGoogle Scholar
  17. 17.
    M. Tavelli, M. Dumbser. A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier-Stokes equations. Appl. Math. Comput. 248, 70–92 (2014)zbMATHMathSciNetGoogle Scholar
  18. 18.
    J. Virieux, P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(4), 889–901 (1986)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsThe Chinese University of Hong KongHong Kong SARPeople’s Republic of China

Personalised recommendations