Pointwise Force Equilibrium Preserving Spectral Element Method for Structural Problems

  • K. OlesenEmail author
  • B. Gervang
  • J. N. Reddy
  • M. Gerritsma
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 119)


In structural mechanics the geometry is a crucial factor in the derivation of the governing force equilibrium equations, which describe the balance of forces in a discrete setting. In conventional discretization techniques the quantities are approximated through nodal expansions, which lead to global force equilibrium, but not local. This paper shows that by considering the geometry of the problem the equilibrium of forces can be satisfied globally as well as locally.


  1. 1.
    A. Bossavit, Discretization of electromagnetic problems, in Handbook of Numerical Analysis, vol. 13 (North-Holland, Amsterdam, 2005), pp. 105–197Google Scholar
  2. 2.
    C. Canuto, M. Hussaini, A. Quarteroni, T. Zang, Spectral Methods, Fundamentals in Single Domains (Springer, Berlin, 2006)zbMATHGoogle Scholar
  3. 3.
    R.D. Cook, D.S. Malkus, M.E. Plesha, R.J. Witt, Concepts and Applications of Finite Element Analysis, 4th edn. (John Wiley and sons, New York, 2001)Google Scholar
  4. 4.
    M. Desbrun, A.N. Hirani, M. Leok, J.E. Marsden, Discrete Exterior Calculus. Arxiv preprint (2005)Google Scholar
  5. 5.
    B. Fraeijs De Veubeke, Upper and Lower Bounds in Matrix Structural Analysis. AGARDograf 72, 165–201 (1964)zbMATHGoogle Scholar
  6. 6.
    B. Fraeijs De Veubeke, Displacements and equilibrium models in the finite elements method, in Stress Analysis, ed. by O.C. Zienkiewicz, G.S. Holister, Chap. 9 (Wiley, London, 1965)Google Scholar
  7. 7.
    B. Fraeijs De Veubeke, Diffusive equilibrium models, in B.M. Fraeijs de Veubeke Memorial Volume of Selected Papers (Sijthoff & Noordhoff, Philadelphia, 1980)Google Scholar
  8. 8.
    M. Gerritsma, Edge functions for spectral element methods, in Spectral and High Order Methods for Partial Differential Equations, ed. by J.S. Hesthaven, E.M. Rønquist. Lecture Notes in Computational Science and Engineering, vol. 76 (Springer, Heidelberg, 2011), pp. 199–207Google Scholar
  9. 9.
    G.E. Karniadakis, S.J. Spencer, Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. (Oxford Science Publications, Oxford, 2005)Google Scholar
  10. 10.
    J. Kreeft, A. Palha, M. Gerritsma, Mimetic Framework on Curvilinear Quadrilaterals of Arbitrary Order. Arxiv preprint (2011)Google Scholar
  11. 11.
    J. Kreeft, M. Gerritsma, Mixed mimetic spectral element method for stokes flow: a pointwise divergence-free solution. J. Comput. Phys. 240, 284–309 (2013)CrossRefMathSciNetGoogle Scholar
  12. 12.
    J.P. Moitinho De Almeida, J.A. Teixeira De Freitas, Alternative approach to the formulation of hybrid equilibrium finite elements. Comput. Struct. 40, 1043–1047 (1991)CrossRefGoogle Scholar
  13. 13.
    J.P. Moitinho De Almeida, J.A. Teixeira De Freitas, A set of hybrid equilibrium finite element models for the analysis of three-dimensional solids. Int. J. Numer. Methods Eng. 39, 2789–2802 (1996)CrossRefzbMATHGoogle Scholar
  14. 14.
    K. Olesen, B. Gervang, J.N. Reddy, M. Gerritsma, Exact Force Equilibrium in Linear Elasticity. ArXiv:1605.05444 [math.NA] (2016)Google Scholar
  15. 15.
    J.N. Reddy, An Introduction to the Finite Element Method, 3rd edn. (McGraw-Hill, New York, 2006)Google Scholar
  16. 16.
    J.N. Reddy, An Introduction to Continuum Mechanics, 2nd edn. (Cambridge University Press, Cambridge, 2013)Google Scholar
  17. 17.
    H.A.F.A. Santos, J.P. Moitinho De Almeida, A family of Piola Kirchhoff hybrid stress finite elements for two-dimensional linear elasticity. Finite Elem. Anal. Des. 85, 33–49 (2014)CrossRefMathSciNetGoogle Scholar
  18. 18.
    E. Tonti, Why starting from differential equations for computational physics? J. Comput. Phys. 257, 1260–1290 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    E. Tonti, F. Zarantonello, Algebraic formulation of elastostatics: the cell method. Comput. Model. Eng. Sci. 39(3), 201–236 (2009)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • K. Olesen
    • 1
    Email author
  • B. Gervang
    • 1
  • J. N. Reddy
    • 2
  • M. Gerritsma
    • 3
  1. 1.Department of EngineeringAarhus UniversityAarhusDenmark
  2. 2.Department of Mechanical EngineeringTexas A & M UniversityCollege StationUSA
  3. 3.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations