Advertisement

An Adaptive Variable Order Quadrature Strategy

  • Paul HoustonEmail author
  • Thomas P. Wihler
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 119)

Abstract

We propose a new adaptive numerical quadrature procedure which includes both local subdivision of the integration domain, as well as local variation of the number of quadrature points employed on each subinterval. In this way we aim to account for local smoothness properties of the integrand as effectively as possible, and thereby achieve highly accurate results in a very efficient manner. Indeed, this idea originates from so-called hp-version finite element methods which are known to deliver high-order convergence rates, even for nonsmooth functions.

Notes

Acknowledgements

Thomas P. Wihler acknowledges the financial support by the Swiss National Science Foundation (SNF).

References

  1. 1.
    I. Bogaert, Iteration-free computation of Gauss-Legendre quadrature nodes and weights. SIAM J. Sci. Comput. 36(3), A1008–A1026 (2014). MR 3209728Google Scholar
  2. 2.
    G. Dahlquist, Å. Björck, Numerical Methods in Scientific Computing. Volume I. Society for Industrial and Applied Mathematics (SIAM, Philadelphia, PA, 2008)Google Scholar
  3. 3.
    P.J. Davis, P. Rabinowitz, Methods of Numerical Integration (Dover Publications, Inc., Mineola, NY, 2007), Corrected reprint of the 2nd edn. (1984)Google Scholar
  4. 4.
    L. Demkowicz, Computing withhp-Adaptive Finite Elements. Volume 1. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series (Chapman & Hall/CRC, Boca Raton, FL, 2007). One and two dimensional elliptic and Maxwell problemsGoogle Scholar
  5. 5.
    R. DeVore, K. Scherer, Variable Knot, Variable Degree Spline Approximation to x β. Quantitative Approximation (Proceedings of International Symposium, Bonn, 1979) (Academic, New York, London, 1980), pp. 121–131Google Scholar
  6. 6.
    T. Fankhauser, T.P. Wihler, M. Wirz, The hp-adaptive FEM based on continuous Sobolev embeddings: isotropic refinements. Comput. Math. Appl. 67(4), 854–868 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    W. Gander, W. Gautschi, Adaptive quadrature—revisited. BIT 40(1), 84–101 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    W. Gui, I. Babuška, The h, p and hp versions of the finite element method in one-dimension, Parts I–III. Numer. Math. 49(6), 577–683 (1986)CrossRefzbMATHGoogle Scholar
  9. 9.
  10. 10.
    N. Hale, L.N. Trefethen, Chebfun and numerical quadrature. Sci. China Math. 55(9), 1749–1760 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    P. Houston, E. Süli, A note on the design of hp–adaptive finite element methods for elliptic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(2–5), 229–243 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    J.M. Melenk, B.I. Wohlmuth. On residual-based a posteriori error estimation in hp-FEM. Adv. Comp. Math. 15, 311–331 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    W.F. Mitchell, M.A. McClain, A comparison of hp-adaptive strategies for elliptic partial differential equations. ACM Trans. Math. Softw. 41, 2:1–2:39 (2014)Google Scholar
  14. 14.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes. The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)Google Scholar
  15. 15.
    K. Scherer, On optimal global error bounds obtained by scaled local error estimates. Numer. Math. 36(2), 151–176 (1980/1981)Google Scholar
  16. 16.
    D. Schötzau, C. Schwab, T.P. Wihler, hp-DGFEM for second-order mixed elliptic problems in polyhedra. Math. Comp. 85(299), 1051–1083, (2016).Google Scholar
  17. 17.
    C. Schwab, Variable order composite quadrature of singular and nearly singular integrals. Computing 53(2), 173–194 (1994) MR 1300776 (96a:65035)Google Scholar
  18. 18.
    C. Schwab, p- and hp-FEM – Theory and Application to Solid and Fluid Mechanics (Oxford University Press, Oxford, 1998)zbMATHGoogle Scholar
  19. 19.
    L.F. Shampine, Vectorized adaptive quadrature in Matlab. J. Comput. Appl. Math. 211(2), 131–140 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    P. Solin, K. Segeth, I. Dolezel, Higher-Order Finite Element Methods. Studies in Advanced Mathematics (Chapman & Hall/CRC, Boca Raton, London, 2004)Google Scholar
  21. 21.
    T.P. Wihler, An hp-adaptive strategy based on continuous Sobolev embeddings. J. Comput. Appl. Math. 235, 2731–2739 (2011)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of NottinghamNottingham NG7 2RDUK
  2. 2.Mathematisches InstitutUniversität BernCH-3012 BernSwitzerland

Personalised recommendations