Advertisement

On Thin Plate Spline Interpolation

  • M. Löhndorf
  • J. M. Melenk
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 119)

Abstract

We present a simple, PDE-based proof of the result (Math Comput 70(234):719–737, 2001) by Johnson that the error estimates of Duchon (RAIRO Anal Numér 12(4):325–334, 1978) for thin plate spline interpolation can be improved by h1∕2. We illustrate that \(\mathcal{H}\)-matrix techniques can successfully be employed to solve very large thin plate spline interpolation problems.

References

  1. 1.
    V. Adolphsson, J. Pipher, The inhomogeneous Dirichlet problem for Δ 2 in Lipschitz domains. J. Funct. Anal. 159, 137–190 (1998)CrossRefMathSciNetGoogle Scholar
  2. 2.
    S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math. 12, 623–727 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure Appl. Math. 17, 35–92 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    M. Bebendorf, Hierarchical LU decomposition-based preconditioners for BEM. Computing 74(3), 225–247 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    S. Börm, L. Grasedyck, H-Lib - a library for \(\mathcal{H}\)- and \(\mathcal{H}^{2}\)-matrices. Available at http://www.hlib.org,1999Google Scholar
  6. 6.
    S. Börm and J.M. Melenk, Approximation of the high frequency Helmholtz kernel by nested directional interpolation: error analysis, Numer. Math. 137, 1–24 (2017)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    J. Bramble, R. Scott, Simultaneous approximation in scales of Banach spaces. Math. Comput. 32, 947–954 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    M.D. Buhmann, Radial Basis Functions: Theory and Implementations. Cambridge Monographs on Applied and Computational Mathematics, vol. 12 (Cambridge University Press, Cambridge, 2003)Google Scholar
  9. 9.
    B.E.J. Dahlberg, C.E. Kenig, J. Pipher, G.C. Verchota, Area integral estimates for higher order elliptic equations and systems. Ann. Inst. Fourier Grenoble 47(5), 1425–1561 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    J. Deny, J.L. Lions, Les espaces du type de Beppo Levi. Ann. Inst. Fourier Grenoble 5, 305–370 (1955)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    J. Duchon, Sur l’erreur d’interpolation des fonctions de plusieurs variables par les D m-splines. RAIRO Anal. Numér. 12(4), 325–334 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    J. Duchon, Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. RAIRO Analyse Numér. 10(R-3), 5–12 (1976)Google Scholar
  13. 13.
    L. Grasedyck, Adaptive recompression of \(\mathcal{H}\)-matrices for BEM. Computing 74(3), 205–223 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    W. Hackbusch, A sparse matrix arithmetic based on \(\mathcal{H}\)-matrices. Part I: introduction to \(\mathcal{H}\)-matrices. Computing 62, 89–108 (1999)Google Scholar
  15. 15.
    W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis. Springer Series in Computational Mathematics, vol. 49 (Springer, Heidelberg, 2015)Google Scholar
  16. 16.
    M.J. Johnson, The L 2-approximation order of surface spline interpolation. Math. Comput. 70(234), 719–737 (2001) [electronic]Google Scholar
  17. 17.
    M. Johnson, An error analysis for radial basis function interpolation. Numer. Math. 98, 675–694 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    M.J. Johnson, The L p-approximation order of surface spline interpolation for 1 ≤ p ≤ 2. Constr. Approx. 20(2), 303–324 (2004)CrossRefMathSciNetGoogle Scholar
  19. 19.
    J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications (Springer, Berlin, 1972)CrossRefzbMATHGoogle Scholar
  20. 20.
    M. Löhndorf, J.M. Melenk, Approximation properties of thin plates splines on Lipschitz domain. (in preparation)Google Scholar
  21. 21.
    J.M. Melenk, on approximation in meshless methods and thin plate spline interpolation, in Third Conference on Meshfree Methods for PDEs. Held in Bonn, Sept. 12–15 (2005) [M. Griebel, M.A. Schweitzer, organizers]Google Scholar
  22. 22.
    J.M. Melenk, T. Gutzmer, Approximation orders for natural splines in arbitrary dimensions. Math. Comput. 70, 699–703 (2001)zbMATHMathSciNetGoogle Scholar
  23. 23.
    J. Pipher, G.C. Verchota, Dilation invariant estimates and the boundary Gårding inequality for higher order elliptic operators. Ann. Math. (2) 142(1), 1–38 (1995)Google Scholar
  24. 24.
    R. Schaback, Improved error bounds for scattered data interpolation by radial basis functions. Math. Comput. 68(225), 201–216 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)zbMATHGoogle Scholar
  26. 26.
    L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana, vol. 3 (Springer, Berlin, 2007)Google Scholar
  27. 27.
    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. (Johann Ambrosius Barth, Heidelberg, 1995)zbMATHGoogle Scholar
  28. 28.
    G. Verchota, The Dirichlet problem for the polyharmonic equation in Lipschitz domains. Indiana Univ. Math. J. 39(3), 671–702 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    H. Wendland, Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 17 (Cambridge University Press, Cambridge, 2005)Google Scholar
  30. 30.
    J. Wloka, Partielle Differentialgleichungen. Teubner (1982)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. Löhndorf
    • 1
  • J. M. Melenk
    • 2
  1. 1.Kapsch TrafficComWienAustria
  2. 2.Technische Universität WienWienAustria

Personalised recommendations